A better fluorescent protein for whole-body imaging.
نویسنده
چکیده
Whole-body imaging with fluorescent proteins is a powerful technology with many applications in small animals. Brighter, red-shifted proteins can make whole-body imaging more sensitive owing to reduced absorption by tissues and less scatter. A new protein called Katushka has been isolated. It is the brightest known protein with emission at wavelengths longer than 620 nm. This new protein offers the potential for noninvasive whole-body imaging of numerous cellular and molecular processes in live animals.
منابع مشابه
Comparative study reveals better far-red fluorescent protein for whole body imaging
Genetically encoded far-red and near-infrared fluorescent proteins enable efficient imaging in studies of tumorigenesis, embryogenesis, and inflammation in model animals. Here we report comparative testing of available GFP-like far-red fluorescent proteins along with a modified protein, named Katushka2S, and near-infrared bacterial phytochrome-based markers. We compare fluorescence signal and s...
متن کاملImplementation of quadratic dose protocol for 18F-FDG whole-body PET imaging using a BGO-based PET/CT scanner, GE Discovery ST
Introduction: The ability of quadratic dose protocol to maintain a good quality image for an overweight and obese patient is well reported. However, a practical approach to the implementation of this protocol in whole-body imaging in Malaysia is currently lacking. Hence, the aim of this study is to derive the quadratic dose formula that suits our PET system. Metho...
متن کامل99mTc-MDP bone scan guides in the identification of mesenteric vein thrombosis
A 50-year-old man with postprandial abdominal pain, weight loss, and generalized body ache was referred to Nuclear medicine department for a whole body bone scan to look for any malignancy. Clinical examination did not reveal any specific positive findings. He underwent aTechnetium-99m Methylene Diphosphonate (99mTc-MDP) bone scan which showed no obvious bone pathology. But there was...
متن کاملIn vivo tomographic imaging of red-shifted fluorescent proteins
We have developed a spectral inversion method for three-dimensional tomography of far-red and near-infrared fluorescent proteins in animals. The method was developed in particular to address the steep light absorption transition of hemoglobin from the visible to the far-red occurring around 600 nm. Using an orthotopic mouse model of brain tumors expressing the red-shifted fluorescent protein mC...
متن کاملImaging In Mice With Fluorescent Proteins: From Macro To Subcellular
Whole-body imaging with fluorescent proteins has been shown to be a powerfultechnology with many applications in small animals. Brighter, red-shifted proteins can makewhole-body imaging even more sensitive due to reduced absorption by tissues and less scatter.For example, a new protein called Katushka has been isolated that is the brightest known proteinwith emission at wavelengths longer than ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in biotechnology
دوره 26 1 شماره
صفحات -
تاریخ انتشار 2008