Multi-Modal Bayesian Embeddings for Learning Social Knowledge Graphs

نویسندگان

  • Zhilin Yang
  • Jie Tang
  • William W. Cohen
چکیده

We study the extent to which online social networks can be connected to knowledge bases. The problem is referred to as learning social knowledge graphs. We propose a multi-modal Bayesian embedding model, GenVector, to learn latent topics that generate word embeddings and network embeddings simultaneously. GenVector leverages large-scale unlabeled data with embeddings and represents data of two modalities—i.e., social network users and knowledge concepts—in a shared latent topic space. Experiments on three datasets show that the proposed method clearly outperforms state-of-the-art methods. We then deploy the method on AMiner, an online academic search system to connect with a network of 38,049,189 researchers with a knowledge base with 35,415,011 concepts. Our method significantly decreases the error rate of learning social knowledge graphs in an online A/B test with live users.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Graphical Models for Causal Analysis of Multi-modal Variables

Graphical causal models are an important tool for knowledge discovery because they can represent both the causal relations between variables and the multivariate probability distributions over the data. Once learned, causal graphs can be used for classification, feature selection and hypothesis generation, while revealing the underlying causal network structure and thus allowing for arbitrary l...

متن کامل

Towards Holistic Concept Representations: Embedding Relational Knowledge, Visual Attributes, and Distributional Word Semantics

Knowledge Graphs (KGs) effectively capture explicit relational knowledge about individual entities. However, visual attributes of those entities, like their shape and color and pragmatic aspects concerning their usage in natural language are not covered. Recent approaches encode such knowledge by learning latent representations (‘embeddings’) separately: In computer vision, visual object featur...

متن کامل

Learning Knowledge Graph Embeddings for Natural Language Processing

Knowledge graph embeddings provide powerful latent semantic representation for the structured knowledge in knowledge graphs, which have been introduced recently. Being different from the already widely-used word embeddings that are conceived from plain text, knowledge graph embeddings enable direct explicit relational inferences among entities via simple calculation of embedding vectors. In par...

متن کامل

Knowledge Fusion via Embeddings from Text, Knowledge Graphs, and Images

We present a baseline approach for cross-modal knowledge fusion. Different basic fusion methods are evaluated on existing embedding approaches to show the potential of joining knowledge about certain concepts across modalities in a fused concept representation.

متن کامل

Generalized Multi-view Embedding for Visual Recognition and Cross-modal Retrieval

In this paper, the problem of multi-view embedding from different visual cues and modalities is considered. We propose a unified solution for subspace learning methods using the Rayleigh quotient, which is extensible for multiple views, supervised learning, and nonlinear embeddings. Numerous methods including canonical correlation analysis, partial least square regression, and linear discrimina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016