Adaptive Boosting of Neural Networks for Character Recognition
نویسندگان
چکیده
”Boosting” is a general method for improving the performance of any learning algorithm that consistently generates classifiers which need to perform only slightly better than random guessing. A recently proposed and very promising boosting algorithm is AdaBoost [5]. It has been applied with great success to several benchmark machine learning problems using rather simple learning algorithms [4], in particular decision trees [1, 2, 6]. In this paper we use AdaBoost to improve the performances of neural networks applied to character recognition tasks. We compare training methods based on sampling the training set and weighting the cost function. Our system achieves about 1.4% error on a data base of online handwritten digits from more than 200 writers. Adaptive boosting of a multi-layer network achieved 2% error on the UCI Letters offline characters data set.
منابع مشابه
Training Methods for Adaptive Boosting of Neural Networks for Character Recognition
Submission to NIPS*97, Category: Algorithms & Architectures, Preferred: Oral ”Boosting” is a general method for improving the performance of any learning algorithm that consistently generates classifiers which need to perform only slightly better than random guessing. A recently proposed and very promising boosting algorithm is AdaBoost [5]. It has been applied with great success to several ben...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملAdaBoosting Neural Networks: Application to on-line Character Recognition
”Boosting” is a general method for improving the performance of any weak learning algorithm that consistently generates classifiers which need to perform only slightly better than random guessing. A recently proposed and very promising boosting algorithm is AdaBoost [4]. It has been applied with great success to several benchmark machine learning problems using rather simple learning algorithms...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997