Generative models of brain connectivity for population studies

نویسنده

  • Archana Venkataraman
چکیده

Connectivity analysis focuses on the interaction between brain regions. Such relationships inform us about patterns of neural communication and may enhance our understanding of neurological disorders. This thesis proposes a generative framework that uses anatomical and functional connectivity information to find impairments within a clinical population. Anatomical connectivity is measured via Diffusion Weighted Imaging (DWI), and functional connectivity is assessed using resting-state functional Magnetic Resonance Imaging (fMRI). We first develop a probabilistic model to merge information from DWI tractography and resting-state fMRI correlations. Our formulation captures the interaction between hidden templates of anatomical and functional connectivity within the brain. We also present an intuitive extension to population studies and demonstrate that our model learns predictive differences between a control and a schizophrenia population. Furthermore, combining the two modalities yields better results than considering each one in isolation. Although our joint model identifies widespread connectivity patterns influenced by a neurological disorder, the results are difficult to interpret and integrate with our regioncentric knowledge of the brain. To alleviate this problem, we present a novel approach to identify regions associated with the disorder based on connectivity information. Specifically, we assume that impairments of the disorder localize to a small subset of brain regions, which we call disease foci, and affect neural communication to/from these regions. This allows us to aggregate pairwise connectivity changes into a region-based representation of the disease. Once again, we use a probabilistic formulation: latent variables specify a template organization of the brain, which we indirectly observe through resting-state fMRI correlations and DWI tractography. Our inference algorithm simultaneously identifies both the afflicted regions and the network of aberrant functional connectivity. Finally, we extend the region-based model to include multiple collections of foci, which we call disease clusters. Preliminary results suggest that as the number of clusters increases, the refined model explains progressively more of the functional differences between the populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

Brain Connectivity Reflected in Electroencephalogram Coherence in Individuals With ‎Autism: A Meta-analysis

Introduction: Many theories have been proposed about the etiology of autism. One is related to brain connectivity in patients with autism. Several studies have reported brain connectivity changes in autism disease. This study was performed on Electroencephalogram (EEG) studies that evaluated patients with autism, using functional brain connectivity, and compared them with typically-developing i...

متن کامل

Joint Generative Model for fMRI/DWI and Its Application to Population Studies

We propose a novel probabilistic framework to merge information from DWI tractography and resting-state fMRI correlations. In particular, we model the interaction of latent anatomical and functional connectivity templates between brain regions and present an intuitive extension to population studies. We employ a mean-field approximation to fit the new model to the data. The resulting algorithm ...

متن کامل

Investigating the functional communication network in patients with knee osteoarthritis using graph-based statistical models

Introduction: Osteoarthritis of the knee is the most prevalent type of arthritis that causes persistent pain and reduces the quality of life. However, no treatment alleviates symptoms or stops the disease from progressing. Functional magnetic resonance imaging (fMRI) studies can provide information on neural mechanisms of pain by assessing correlation patterns among the different regions of the...

متن کامل

From Brain Connectivity Models to Identifying Foci of a Neurological Disorder

We propose a novel approach to identify the foci of a neurological disorder based on anatomical and functional connectivity information. Specifically, we formulate a generative model that characterizes the network of abnormal functional connectivity emanating from the affected foci. We employ the variational EM algorithm to fit the model and to identify both the afflicted regions and the differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012