Cooperation-Controlled Learning for Explicit Class Structure in Self-Organizing Maps

نویسنده

  • Ryotaro Kamimura
چکیده

We attempt to demonstrate the effectiveness of multiple points of view toward neural networks. By restricting ourselves to two points of view of a neuron, we propose a new type of information-theoretic method called "cooperation-controlled learning." In this method, individual and collective neurons are distinguished from one another, and we suppose that the characteristics of individual and collective neurons are different. To implement individual and collective neurons, we prepare two networks, namely, cooperative and uncooperative networks. The roles of these networks and the roles of individual and collective neurons are controlled by the cooperation parameter. As the parameter is increased, the role of cooperative networks becomes more important in learning, and the characteristics of collective neurons become more dominant. On the other hand, when the parameter is small, individual neurons play a more important role. We applied the method to the automobile and housing data from the machine learning database and examined whether explicit class boundaries could be obtained. Experimental results showed that cooperation-controlled learning, in particular taking into account information on input units, could be used to produce clearer class structure than conventional self-organizing maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collision Avoidance for a Visuo - motor System Using Multiple Self - organizing Maps

Collision avoidance for a visuo-motor system in unstructured and cluttered environment is described. The achievement of collision avoidance is based on a simplified path planning system and motion control performed by self-organizing maps. The self-organizing maps are learned to determine joint angles of a redundant manipulator. Since the learning algorithm promises to make the manipulator reac...

متن کامل

Imbalanced evolving self-organizing learning

In this paper, a hybrid learning model of imbalanced evolving self-organizing maps (IESOMs) is proposed to address the imbalanced learning problems. In our approach, we propose to modify the classic SOM learning rule to search the winner neuron based on energy function by minimally reducing local error in the competitive learning phase. The advantage of IESOM is that it can improve the classifi...

متن کامل

Double Competition for Information-Theoretic SOM

In this paper, we propose a new type of informationtheoretic method for the self-organizing maps (SOM), taking into account competition between competitive (output) neurons as well as input neurons. The method is called ”double competition”, as it considers competition between outputs as well as input neurons. By increasing information in input neurons, we expect to obtain more detailed informa...

متن کامل

Tag Clustering with Self Organizing Maps

© Tag Clustering with Self Organizing Maps Marco Luca Sbodio, Edwin Simpson HP Laboratories HPL-2009-338 SOM, clustering, machine learning, folksonomy, tagging, web 2.0 Today, user-generated tags are a common way of navigating and organizing collections of resources. However, their value is limited by a lack of explicit semantics and differing use of tags between users. Clustering techniques th...

متن کامل

Label Propagation for Semi-Supervised Learning in Self-Organizing Maps

Semi-supervised learning aims at discovering spatial structures in high-dimensional input spaces when insufficient background information about clusters is available. A particulary interesting approach is based on propagation of class labels through proximity graphs. The Emergent Self-Organizing Map (ESOM) itself can be seen as such a proximity graph that is suitable for label propagation. It t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014