Preterm infant hippocampal volumes correlate with later working memory deficits.
نویسندگان
چکیده
Children born preterm exhibit working memory deficits. These deficits may be associated with structural brain changes observed in the neonatal period. In this study, the relationship between neonatal regional brain volumes and working memory deficits at age 2 years were investigated, with a particular interest in the dorsolateral prefrontal cortex, parietal cortex and the hippocampus. While the eligible sample consisted of 227 very preterm children who were born at the Royal Women's Hospital, Melbourne prior to 30 weeks gestation or weighing <1250 g, 156 children had complete data sets. Neonatal magnetic resonance images of the brain were obtained at term equivalent age and subsequently parcellated into eight sub-regions, while the hippocampus was manually segmented. The relationship between brain volumes for these regions and performance on a working memory task (delayed alternation) at 2 years of age was examined. Very preterm children who perseverated on the working memory task had significantly smaller hippocampal volumes than very preterm children who exhibited intact working memory, even after adjusting for relevant perinatal, sociodemographic and developmental factors. Preterm children appear to have altered hippocampal volumes by discharge from hospital which may have a lasting impact on working memory function.
منابع مشابه
Object working memory deficits predicted by early brain injury and development in the preterm infant.
Children born preterm and of very low birth weight are at increased risk of learning difficulties and educational under-achievement. However, little is known about the specific neuropsychological problems facing these children or their neurological basis. Using prospective longitudinal data from a regional cohort of 92 preterm and 103 full-term children, this study examined relations between te...
متن کاملAssociation of impaired neuronal migration with cognitive deficits in extremely preterm infants.
Many extremely preterm infants (born before 28 gestational weeks [GWs]) develop cognitive impairment in later life, although the underlying pathogenesis is not yet completely understood. Our examinations of the developing human neocortex confirmed that neuronal migration continues beyond 23 GWs, the gestational week at which extremely preterm infants have live births. We observed larger numbers...
متن کاملMR-determined hippocampal asymmetry in full-term and preterm neonates.
Hippocampi are asymmetrical in children and adults, where the right hippocampus is larger. To date, no literature has confirmed that hippocampal asymmetry is evident at birth. Furthermore, gender differences have been observed in normal hippocampal asymmetry, but this has not been examined in neonates. Stress, injury, and lower IQ have been associated with alterations to hippocampal asymmetry. ...
متن کاملHippocampal volume reduction and autobiographical memory deficits in chronic schizophrenia.
Although autobiographical memory (AM) deficits and hippocampal changes are frequently found in schizophrenia, their actual association remained yet to be established. AM performance and hippocampal volume were examined in 33 older, chronic schizophrenic patients and 21 healthy volunteers matched for age, gender and education. Psychopathological symptoms and additional neuropsychological paramet...
متن کاملSpecific white matter diffusion characteristics in the newborn period correlate with either neuromotor or neurocognitive outcome at 2 years. A voxel based Analysis
Introduction Full attainment of brain function is dependent on cortical integrity and fully myelinated white matter. Myelination is an important process of brain development. This process takes place in the foetal period and is mostly completed by the age of 2. Preterm birth can lead to delay and deficits in brain myelination with consequences for neuromotor and neurocognitive capacities in ear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain : a journal of neurology
دوره 131 Pt 11 شماره
صفحات -
تاریخ انتشار 2008