ar X iv : 0 80 8 . 01 63 v 1 [ cs . D S ] 1 A ug 2 00 8 Twice - Ramanujan Sparsifiers ∗

نویسندگان

  • Daniel A. Spielman
  • Nikhil Srivastava
چکیده

We prove that for every d > 1 and every undirected, weighted graph G = (V, E), there exists a weighted graph H with at most ⌈d |V |⌉ edges such that for every x ∈ IR , 1 ≤ x T LHx x LGx ≤ d + 1 + 2 √ d d + 1 − 2 √ d , where LG and LH are the Laplacian matrices of G and H , respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 3 . 09 29 v 2 [ cs . D S ] 7 M ar 2 00 8 Graph Sparsification by Effective Resistances ∗

We present a nearly-linear time algorithm that produces high-quality sparsifiers of weighted graphs. Given as input a weighted graph G = (V,E,w) and a parameter ǫ > 0, we produce a weighted subgraph H = (V, Ẽ, w̃) of G such that |Ẽ| = O(n logn/ǫ) and for all vectors x ∈ R (1 − ǫ) ∑ uv∈E (x(u)− x(v))2wuv ≤ ∑ uv∈Ẽ (x(u)− x(v))2w̃uv ≤ (1 + ǫ) ∑ uv∈E (x(u)− x(v))2wuv. (1) This improves upon the spars...

متن کامل

ar X iv : 0 80 3 . 09 29 v 4 [ cs . D S ] 1 8 N ov 2 00 9 Graph Sparsification by Effective Resistances ∗

We present a nearly-linear time algorithm that produces high-quality spectral sparsifiers of weighted graphs. Given as input a weighted graph G = (V, E, w) and a parameter ! > 0, we produce a weighted subgraph H = (V, Ẽ, w̃) of G such that |Ẽ| = O(n log n/!) and for all vectors x ∈ R (1 − !) ∑ uv∈E (x(u) − x(v))2wuv ≤ ∑ uv∈Ẽ (x(u) − x(v))2w̃uv ≤ (1 + !) ∑ uv∈E (x(u) − x(v))2wuv. (1) This improves...

متن کامل

ar X iv : 0 80 3 . 09 29 v 1 [ cs . D S ] 6 M ar 2 00 8 Graph Sparsification by Effective Resistances ∗

We present a nearly-linear time algorithm that produces high-quality sparsifiers of weighted graphs. Given as input a weighted graph G = (V,E,w) and a parameter ǫ > 0, we produce a weighted subgraph H = (V, Ẽ, w̃) of G such that |Ẽ| = O(n logn/ǫ) and for all vectors x ∈ R (1 − ǫ) ∑ uv∈E (x(u)− x(v))2wuv ≤ ∑ uv∈Ẽ (x(u)− x(v))2w̃uv ≤ (1 + ǫ) ∑ uv∈E (x(u)− x(v))2wuv. (1) This improves upon the spars...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008