The effects of load on transmural differences in contraction of isolated mouse ventricular cardiomyocytes.
نویسندگان
چکیده
Mechanical properties of cardiomyocytes from different transmural regions are heterogeneous in the left ventricular wall. The cardiomyocyte mechanical environment affects this heterogeneity because of mechano-electric feedback mechanisms. In the present study, we investigated the effects of the mechanical load (preload and afterload) on transmural differences in contraction of subendocardial (ENDO) and subepicardial (EPI) single cells isolated from the murine left ventricle. Various preloads imposed via axial stretch and afterloads (unloaded and heavy loaded conditions) were applied to the cells using carbon fiber techniques for single myocytes. To simulate experimentally obtained results and to predict mechanisms underlying the cellular response to change in load, our mathematical models of the ENDO and EPI cells were used. Our major findings are the following. Our results show that ENDO and EPI cardiomyocytes have different mechanical responses to changes in preload to the cells. Under auxotonic contractions at low preload (unstretched cells), time to peak contraction (Tmax) and the time constant of [Ca2+]i transient decay were significantly longer in ENDO cells than in EPI cells. An increase in preload (stretched cells) prolonged Tmax in both cell types; however, the prolongation was greater in EPI cells, resulting in a decrease in the transmural gradient in Tmax at high preload. Comparing unloaded and heavy loaded (isometric) contractions of the cells we found that transmural gradient in the time course of contraction is independent of the loading conditions. Our mathematical cell models were able to reproduce the experimental results on the distinct cellular responses to changes in the mechanical load when we accounted for an ENDO/EPI difference in the parameters of cooperativity of calcium activation of myofilaments.
منابع مشابه
Modulation of extracellular atrioventricular node field potential pattern and ventricular rhythm by morphine in experimental atrial fibrillation in isolated rabbit heart
Introduction: Endorphins are produced by cardiomyocytes, and exert different effects on the heart. The aim of the present study is to assess morphine effects on extracellular atrioventricular (AV) node field potential pattern and ventricular rhythm of isolated rabbit heart during experimental atrial fibrillation (AF). Methods: Effects of different concentrations of morphine (10, 20, 50 and 1...
متن کاملTransmural Cellular Heterogeneity in Myocardial Electromechanics Running title: Simulation of electromechanical heterogeneity in cardiomyocytes
Myocardial heterogeneity is an attribute of the normal heart. We have developed integrative models of cardiomyocytes from the subendocardial (ENDO) and subepicardial (EPI) ventricular regions that take into account experimental data on specific features of intracellular electromechanical coupling in the guinea pig heart. The models adequately simulate experimental data on the action potential a...
متن کاملTemperature and transmural region influence functional measurements in unloaded left ventricular cardiomyocytes
Intact cardiomyocytes are increasingly being used to investigate the molecular mechanisms of contraction and to screen new therapeutic compounds. The function of the cardiomyocytes is often measured from the calcium transients and sarcomere length profiles. We studied the role of experimental temperature and transmural region on indices of function in freshly isolated, unloaded cardiomyocytes. ...
متن کاملGenetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro
Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...
متن کاملVariable t-tubule organization and Ca2+ homeostasis across the atria.
Although t-tubules have traditionally been thought to be absent in atrial cardiomyocytes, recent studies have suggested that t-tubules exist in the atria of large mammals. However, it is unclear whether regional differences in t-tubule organization exist that define cardiomyocyte function across the atria. We sought to investigate regional t-tubule density in pig and rat atria and the consequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular and cellular cardiology
دوره 114 شماره
صفحات -
تاریخ انتشار 2018