Enhancing and controlling single-atom high-harmonic generation spectra: a time-dependent density-functional scheme
نویسندگان
چکیده
High harmonic generation (HHG) provides a flexible framework for the development of coherent light sources in the extreme-ultraviolet and soft x-ray regimes. However it suffers from low conversion efficiencies as the control of the HHG spectral and temporal characteristics requires manipulating electron trajectories on attosecond time scale. The phase matching mechanism has been employed to selectively enhance specific quantum paths leading to HHG. A few important fundamental questions remain open, among those how much of the enhancement can be achieved by the single-emitter and what is the role of correlations (or the electronic structure) in the selectivity and control of HHG generation. Here we address those questions by examining computationally the possibility of optimizing the HHG spectrum of isolated Hydrogen and Helium atoms by shaping the slowly varying envelope of a 800 nm, 200-cycles long laser pulse. The spectra are computed with a fully quantum mechanical description, by explicitly computing the time-dependent dipole moment of the systems using a time-dependent density-functional approach (or the single-electron Schrödinger equation for the case of H), on top of a one-dimensional model. The sought optimization corresponds to the selective enhancement of single harmonics, which we find to be significant. This selectivity is entirely due to the single atom response, and not to any propagation or phasematching effect. Moreover, we see that the electronic correlation plays a role in the determining the degree of optimization that can be obtained.
منابع مشابه
Generation of Nonclassical States of the Radiation Field in the System of a Single Trapped Atom in a Cavity within the First Order of the Lamb-Dicke Approximation
In this paper, we propose a theoretical scheme for the generation of non-classical states of the cavity field in a system of a single trapped atom via controlling the Lamb-Dicke parameter. By exploiting the super-operator method, we obtain an analytical expression for the density operator of the system by which we examine the dynamical behaviors of the atomic population inversion, the phase-spa...
متن کاملContributions of inner-valence molecular orbitals and multiphoton resonances to high-order-harmonic generation of N2: A time-dependent density-functional-theory study
Using a time-dependent density-functional-theory (TDDFT) method, we calculated the high-harmonic generation (HHG) spectra of N2 in 800and 1300-nm intense lasers. The calculations reproduce the experimentally observed minimum near 40 eV and the shift of the minimum due to interference of different molecular orbitals. They also support the proposed shape resonance near 30 eV. The TDDFT method all...
متن کاملThe structural and density state calculation of B Nitrogen doped silicene nano flake
In this paper, we study the effect of single Boron/Nitrogen impurityatom on electronic properties of a silicene nano flake. Our calculations are basedon density functional theory by using Gaussian package. Here, one Si atom insilicene nano flake substitutes with a Boron/Nitrogen atom. The results show thatsubstitution of one Si atom with single Boron/Nitrogen atom increases distanceof impurity ...
متن کاملTime Frequency Analysis of Higher Harmonic Generation in a Three Color Laser Pulse
high harmonic generation is a useful tool for the generation of short, intense attosecond pulses. In order to simulate high harmonic generation, we performed a numerical solution to the time dependent Schrödinger equation. by considering dipole approximation, we predicted generation of a 53 attosecond pulse. In order to see the time and frequency of emission of attosecond pulse, we exploit...
متن کاملHigh-harmonic generation in a dense medium
The high-harmonic generation in a plasma or gas under conditions when the single-atom response is affected by neighboring ions or atoms of the medium is studied theoretically. We solve numerically the threedimensional Schrödinger equation for a single-electron atom in the combined fields of the neighboring particles and the laser, and average the results over different random positions of the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014