Anomalous diffusion, stable processes, and generalized functions.

نویسنده

  • Barry D Hughes
چکیده

The evolution equations in real space and time corresponding to a class of anomalous diffusion processes are examined. As special cases, evolution equations corresponding to stable processes are derived using the theory of generalized functions, recovering some known results differently interpreted, and an evolution law for stable processes of order unity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomalous processes with general waiting times: functionals and multipoint structure.

Many transport processes in nature exhibit anomalous diffusive properties with nontrivial scaling of the mean square displacement, e.g., diffusion of cells or of biomolecules inside the cell nucleus, where typically a crossover between different scaling regimes appears over time. Here, we investigate a class of anomalous diffusion processes that is able to capture such complex dynamics by virtu...

متن کامل

Generalized Fractional Master Equation for Self-Similar Stochastic Processes Modelling Anomalous Diffusion

The Master Equation approach to model anomalous diffusion is considered. Anomalous diffusion in complex media can be described as the result of a superposition mechanism reflecting inhomogeneity and nonstationarity properties of the medium. For instance, when this superposition is applied to the time-fractional diffusion process, the resulting Master Equation emerges to be the governing equatio...

متن کامل

A Model for Ordinary Levy Motion

We propose a simple model based on the Gnedenko limit theorem for simulation and studies of the ordinary Levy motion, that is, a random process, whose increments are independent and distributed with a stable probability law. We use the generalized structure function for characterizing anomalous diffusion rate and propose to explore the modified Hurst method for empirical rescaled range analysis...

متن کامل

Generalized Kubo relations and conditions for anomalous diffusion: physical insights from a mathematical theorem.

The paper describes an approach to anomalous diffusion within the framework of the generalized Langevin equation. Using a Tauberian theorem for Laplace transforms due to Hardy, Littlewood, and Karamata, generalized Kubo relations for the relevant transport coefficients are derived from the asymptotic form of the mean square displacement. In a second step conditions for anomalous diffusion are d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 65 3 Pt 2A  شماره 

صفحات  -

تاریخ انتشار 2002