In vitro reconstitution of intercompartmental protein transport to the yeast vacuole

نویسندگان

  • T A Vida
  • T R Graham
  • S D Emr
چکیده

Toward a detailed understanding of protein sorting in the late secretory pathway, we have reconstituted intercompartmental transfer and proteolytic maturation of a yeast vacuolar protease, carboxypeptidase Y (CPY). This in vitro reconstitution uses permeabilized yeast spheroplasts that are first radiolabeled in vivo under conditions that kinetically trap ER and Golgi apparatus-modified precursor forms of CPY (p1 and p2, respectively). After incubation at 25 degrees C, up to 45% of the p2CPY that is retained in the perforated cells can be proteolytically converted to mature CPY (mCPY). This maturation is specific for p2CPY, requires exogenously added ATP, an ATP regeneration system, and is stimulated by cytosolic protein extracts. The p2CPY processing shows a 5-min lag period and is then linear for 15-60 min, with a sharp temperature optimum of 25-30 degrees C. After hypotonic extraction, the compartments that contain p2 and mCPY show different osmotic stability characteristics as p2 and mCPY can be separated with centrifugation into a pellet and supernatant, respectively. Like CPY maturation in vivo, the observed in vitro reaction is dependent on the PEP4 gene product, proteinase A, which is the principle processing enzyme. After incubation with ATP and cytosol, mCPY was recovered in a vacuole-enriched fraction from perforated spheroplasts using Ficoll step-gradient centrifugation. The p2CPY precursor was not recovered in this fraction indicating that intercompartmental transport to the vacuole takes place. In addition, intracompartmental processing of p2CPY with autoactivated, prevacuolar zymogen pools of proteinase A cannot account for this reconstitution. Stimulation of in vitro processing with energy and cytosol took place efficiently when the expression of PEP4, under control of the GAL1 promoter, was induced then completely repressed before radiolabeling spheroplasts. Finally, reconstitution of p2CPY maturation was not possible with vps mutant perforated cells suggesting that VPS gene product function is necessary for intercompartmental transport to the vacuole in vitro.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment

We are studying intercompartmental protein transport to the yeast lysosome-like vacuole with a reconstitution assay using permeabilized spheroplasts that measures, in an ATP and cytosol dependent reaction, vacuolar delivery and proteolytic maturation of the Golgi-modified precursor forms of vacuolar hydrolases like carboxypeptidase Y (CPY). To identify the potential donor compartment in this as...

متن کامل

A Cell-Free Assay Allows Reconstitution of Vps33p-Dependent Transport to the Yeast Vacuole/Lysosome

We report a cell-free system that measures transport-coupled maturation of carboxypeptidase Y (CPY). Yeast spheroplasts are lysed by extrusion through polycarbonate filters. After differential centrifugation, a 125,000-g pellet is enriched for radiolabeled proCPY and is used as "donor" membranes. A 15,000-g pellet, harvested from nonradiolabeled cells and enriched for vacuoles, is used as "acce...

متن کامل

Reconstitution of SEC gene product-dependent intercompartmental protein transport.

Transport of alpha-factor precursor from the endoplasmic reticulum to the Golgi apparatus has been reconstituted in gently lysed yeast spheroplasts. Transport is measured through the coupled addition of outer-chain carbohydrate to [35S]methionine-labeled alpha-factor precursor translocated into the endoplasmic reticulum of broken spheroplasts. The reaction is absolutely dependent on ATP, stimul...

متن کامل

Protein transport to the vacuole and receptor-mediated endocytosis by clathrin heavy chain-deficient yeast

Clathrin heavy chain-deficient mutants (chcl) of Saccharomyces cerevisiae are viable but exhibit compromised growth rates. To investigate the role of clathrin in intercompartmental protein transport, two pathways have been monitored in chcl cells: transport of newly synthesized vacuolar proteins to the vacuole and receptor-mediated uptake of mating pheromone. Newly synthesized precursors of the...

متن کامل

In vitro reconstitution of cytoplasm to vacuole protein targeting in yeast

Although the majority of known vacuolar proteins transit through the secretory pathway, two vacuole-resident proteins have been identified that reach this organelle by an alternate pathway. These polypeptides are targeted to the vacuole directly from the cytoplasm by a novel import mechanism. The best characterized protein that uses this pathway is aminopeptidase I (API). API is synthesized as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 111  شماره 

صفحات  -

تاریخ انتشار 1990