Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations.

نویسندگان

  • Bernd Winter
  • Ramona Weber
  • Ingolf V Hertel
  • Manfred Faubel
  • Pavel Jungwirth
  • Eric C Brown
  • Stephen E Bradforth
چکیده

Photoelectron spectroscopy combined with the liquid microjet technique enables the direct probing of the electronic structure of aqueous solutions. We report measured and calculated lowest vertical electron binding energies of aqueous alkali cations and halide anions. In some cases, ejection from deeper electronic levels of the solute could be observed. Electron binding energies of a given aqueous ion are found to be independent of the counterion and the salt concentration. The experimental results are complemented by ab initio calculations, at the MP2 and CCSD(T) level, of the ionization energies of these prototype ions in the aqueous phase. The solvent effect was accounted for in the electronic structure calculations in two ways. An explicit inclusion of discrete water molecules using a set of snapshots from an equilibrium classical molecular dynamics simulations and a fractional charge representation of solvent molecules give good results for halide ions. The electron binding energies of alkali cations computed with this approach tend to be overestimated. On the other hand, the polarizable continuum model, which strictly provides adiabatic binding energies, performs well for the alkali cations but fails for the halides. Photon energies in the experiment were in the EUV region (typically 100 eV) for which the technique is probing the top layers of the liquid sample. Hence, the reported energies of aqueous ions are closely connected with both structures and chemical reactivity at the liquid interface, for example, in atmospheric aerosol particles, as well as fundamental bulk solvation properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron binding energies of hydrated H3O+ and OH-: photoelectron spectroscopy of aqueous acid and base solutions combined with electronic structure calculations.

The electronic structure of hydrated H3O+ and OH- is probed in a water jet by photoelectron spectroscopy employing 100 eV photons. The first ionization potential for OH- at 9.2 eV and the second ionization potential for H3O+ at 20 eV are resolved, corresponding to the removal of an electron from the 2ppi highest occupied molecular orbital and from the 1e orbital, respectively. These assignments...

متن کامل

Role of alkali cations for the excited state dynamics of liquid water near the surface.

Time-resolved liquid jet photoelectron spectroscopy was used to explore the excited state dynamics at the liquid water surface in the presence of alkali cations. The data were evaluated with the help of ab initio calculations on alkali-water clusters and an extension of these results on the basis of the dielectric continuum model: 160 nm, sub-20 fs vacuum ultraviolet pulses excite water molecul...

متن کامل

Direct observation of segregation of sodium and chloride ions at an ice surface.

Distribution of electrolyte ions near the surface of water or ice is a subject of interest in both fundamental chemistry and atmospheric chemistry of sea-salt aerosols and ice particles. The ion distribution at the surface of these particles may affect their reaction with ozone and organic species in the troposphere and the generation of reactive halogen species. 2] In early studies, the surfac...

متن کامل

Ions at the air/water interface

We present results from theoretical studies of aqueous ionic solvation of alkali halides aimed at developing a microscopic description of structure and dynamics at the interface between air and salt solutions. The traditional view has depicted the air/solution interface of simple electrolytes as being devoid of ions. However, it is now firmly established that polarizable anions, such as the hea...

متن کامل

Ion partitioning at the liquid/vapor interface of a multicomponent alkali halide solution: a model for aqueous sea salt aerosols.

The chemistry of Br species associated with sea salt ice and aerosols has been implicated in the episodes of ozone depletion reported at Arctic sunrise. However, Br(-) is only a minor component in sea salt, which has a Br(-)/Cl(-) molar ratio of approximately 0.0015. Sea salt is a complex mixture of many different species, with NaCl as the primary component. In recent years experimental and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 19  شماره 

صفحات  -

تاریخ انتشار 2005