Viscosity of glass-forming liquids.
نویسندگان
چکیده
The low-temperature dynamics of ultraviscous liquids hold the key to understanding the nature of glass transition and relaxation phenomena, including the potential existence of an ideal thermodynamic glass transition. Unfortunately, existing viscosity models, such as the Vogel-Fulcher-Tammann (VFT) and Avramov-Milchev (AM) equations, exhibit systematic error when extrapolating to low temperatures. We present a model offering an improved description of the viscosity-temperature relationship for both inorganic and organic liquids using the same number of parameters as VFT and AM. The model has a clear physical foundation based on the temperature dependence of configurational entropy, and it offers an accurate prediction of low-temperature isokoms without any singularity at finite temperature. Our results cast doubt on the existence of a Kauzmann entropy catastrophe and associated ideal glass transition.
منابع مشابه
Bond Strength—Coordination Number Fluctuation Model of Viscosity: An Alternative Model for the Vogel-Fulcher-Tammann Equation and an Application to Bulk Metallic Glass Forming Liquids
The Vogel-Fulcher-Tammann (VFT) equation has been used extensively in the analysis of the experimental data of temperature dependence of the viscosity or of the relaxation time in various types of supercooled liquids including metallic glass forming materials. In this article, it is shown that our model of viscosity, the Bond Strength-Coordination Number Fluctuation (BSCNF) model, can be used a...
متن کاملSize-Dependent Viscosity in the Super-Cooled Liquid State of a Bulk Metallic Glass
We experimentally investigate the role of sample size on the viscosity of a bulk metallic glass by examining pressure driven flows in nm-scale confinement. A Pt57.5Cu14.7Ni5.3P22.5 metallic glass in the super-cooled liquid state is extruded into isolated cylindrical pores of varying nano-scale dimensions, down to 40 nm. The apparent viscosity of the liquid as a function of sample size is determ...
متن کاملBond Strength-Coordination Number Fluctuations and the Fragility of Some Ion Conducting Oxide and Chalcogenide Glass Forming Liquids
The concept of fragility has been used widely to characterize the temperature dependence of the viscosity of glass forming liquids. According to a model proposed by one of the authors, the fragility is determined by the relaxation of structural units that form the melt, and is described in terms of the bond strength, coordination number and their fluctuations. In the present contribution, the m...
متن کاملA Cooperative Shear Model for the Rheology of Glass-Forming Metallic Liquids
2.1 Abstract A rheological law based on the concept of cooperatively sheared flow zones is presented, in which the effective thermodynamic state variable controlling flow is identified to be the isoconfigurational shear modulus of the liquid. The law captures Newtonian as well as non-Newtonian viscosity data for glass-forming metallic liquids over a broad range of fragility. Acoustic measuremen...
متن کاملCooperative shear model for the rheology of glass-forming metallic liquids.
A rheological law based on the concept of cooperatively sheared flow zones is presented, in which the effective thermodynamic state variable controlling flow is identified to be the isoconfigurational shear modulus of the liquid. The law captures Newtonian as well as non-Newtonian viscosity data for glass-forming metallic liquids over a broad range of fragility. Acoustic measurements on specime...
متن کاملOn the Fragility of Bulk Metallic Glass Forming Liquids
In contrast to pure metals and most non-glass forming alloys, metallic glass-formers are moderately strong liquids in terms of fragility. The notion of fragility of an undercooling liquid reflects the sensitivity of the viscosity of the liquid to temperature changes and describes the degree of departure of the liquid kinetics from the Arrhenius equation. In general, the fragility of metallic gl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 47 شماره
صفحات -
تاریخ انتشار 2009