Activation of presynaptic 5-hydroxytryptamine 2A receptors facilitates excitatory synaptic transmission via protein kinase C in the dorsolateral septal nucleus.
نویسندگان
چکیده
Effects of 5-hydroxytryptamine (5-HT) on EPSPs and EPSCs in the rat dorsolateral septal nucleus (DLSN) were examined in the presence of GABA(A) and GABA(B) receptor antagonists. Bath application of 5-HT (10 microm) for 5-10 min increased the amplitude of the EPSP and EPSC. (+/-)-8-hydroxy-2-(di-N-propylamino)tetralin hydrobromide (10 microm), an agonist for 5-HT1A and 5-HT7 receptors, did not facilitate the EPSP. alpha-Methyl-5-HT (10 microm), a 5-HT2 receptor agonist, increased the amplitude of the EPSC. Alpha-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine (10 microm) and 6-chloro-2-(1-piperazinyl)pyrazine (10 microm), selective 5-HT2B and 5-HT2C receptor agonists, respectively, had no effect on the EPSP. The 5-HT-induced facilitation of the EPSP was blocked by ketanserin (10 microm), a 5-HT2A/2C receptor antagonist. However, N-desmethylclozapine (10 microm), a selective 5-HT2C receptor antagonist, did not block the facilitation of the EPSP induced by alpha-methyl-5-HT. The inward current evoked by exogenous glutamate was unaffected by 5-HT. 5-HT (10 microm) and alpha-methyl-5-HT (10 microm) increased the frequency of miniature EPSPs (mEPSPs) without changing the mEPSP amplitude. The ratio of the paired pulse facilitation was significantly decreased by 5-HT and alpha-methyl-5-HT. The 5-HT-induced facilitation of the EPSP was blocked by calphostin C (100 nm), a specific protein kinase C (PKC) inhibitor, but not by N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (10 microm), a protein kinase A inhibitor. Phorbol 12,13-dibutyrate (3 microm) mimicked the facilitatory effects of 5-HT. These results suggest that 5-HT enhances the EPSP by increasing the release of glutamate via presynaptic 5-HT2A receptors that link with PKC in rat DLSN neurons.
منابع مشابه
Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices.
Both brain-derived neurotrophic factor (BDNF) and adenosine influence neuronal plasticity. We now investigated how adenosine influences the action of BDNF on synaptic transmission in the CA1 area of the rat hippocampal slices. Alone, BDNF (20-100 ng/ml) did not significantly affect field EPSPs (fEPSPs). However, a 2 min pulse of high-K(+) (10 mm) 46 min before the application of BDNF (20 ng/ml)...
متن کاملPresynaptic GABAB receptors reduce transmission at parabrachial synapses in the lateral central amygdala by inhibiting N-type calcium channels
The nocioceptive information carried by neurons of the pontine parabrachial nucleus to neurons of the lateral division of the central amydala (CeA-L) is thought to contribute to the affective components of pain and is required for the formation of conditioned-fear memories. Importantly, excitatory transmission between parabrachial axon terminals and CeA-L neurons can be inhibited by a number of...
متن کاملDopamine presynaptically depresses fast inhibitory synaptic transmission via D4 receptor-protein kinase A pathway in the rat dorsolateral septal nucleus.
The lateral septal nucleus receives a diffuse dopaminergic input originating from the ventral tegmental area of the brain stem. We examined whether dopamine (DA) modulates synaptic transmission in the slice preparation of the rat dorsolateral septal nucleus (DLSN). Bath application (10-15 min) of DA (30 muM) markedly depressed the amplitude of fast and slow inhibitory postsynaptic potentials (I...
متن کاملNeuropeptide Y selectively inhibits slow synaptic potentials in rat dorsal raphe nucleus in vitro by a presynaptic action.
Neuropeptide Y (NPY) has been shown to modulate synaptic transmission in both peripheral and central tissues via both pre- and postsynaptic mechanisms. In this study, we examined the effect of NPY and its analog, peptide YY (PYY), on slow synaptic potentials in the dorsal raphe nucleus in vitro using intracellular recording and single-microelectrode voltage-clamp techniques. NPY and PYY inhibit...
متن کاملEnhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors.
Phosphorylation of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by Protein Kinase A (PKA) is known to regulate AMPA receptor (AMPAR) trafficking and stabilization at the postsynaptic membrane, which in turn is one of the key mechanisms by which synaptic transmission and plasticity are tuned. However, not much is known as to how Gs-coupled receptors contribute ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 17 شماره
صفحات -
تاریخ انتشار 2002