A Structured Probabilistic Model for Recognition

نویسنده

  • Cordelia Schmid
چکیده

In this paper we derive a probabilistic model for recognition based on local descriptors and spatial relations between these descriptors. Our model takes into account the variability of local descriptors, their saliency as well as the probability of spatial conngura-tions. It is structured to clearly separate the probability of point-wise correspondences from the spatial coherence of sets of correspondences. For each descriptor of the query image, several correspondences in the image database exist. Each of these point-wise correspondences is weighted by its variability and its saliency. We then search for sets of correspondences which reinforce each other, that is which are spatially coherent. The recognized model is the one which obtains the highest evidence from these sets. To validate our probabilistic model, it is compared to an existing method for image retrieval. The experimental results are given for a database containing more than 1000 images. They clearly show the significant gain obtained by adding the probabilistic model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

A structured statistical language model conditioned by arbitrarily abstracted grammatical categories based on GLR parsing

This paper presents a new statistical language model for speech recognition, based on Generalized LR parsing. The proposed model, the Abstracted Probabilistic GLR (APGLR) model, is an extension of the existing structured language model known as the Probabilistic GLR (PGLR) model. It can predict next words from arbitrarily abstracted categories. The APGLR model is also a generalization of the or...

متن کامل

Refinement of a Structured Language Model

A new language model for speech recognition inspired by linguistic analysis is presented. The model develops hidden hierarchical structure incrementally and uses it to extract meaningful information from the word history — thus enabling the use of extended distance dependencies — in an attempt to complement the locality of currently used n-gram Markov models. The model, its probabilistic parame...

متن کامل

IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Confidence Estimation in Structured Prediction

Structured classification tasks such as sequence labeling and dependency parsing have seen much interest by the Natural Language Processing and the machine learning communities. Several online learning algorithms were adapted for structured tasks such as Perceptron, PassiveAggressive and the recently introduced Confidence-Weighted learning . These online algorithms are easy to implement, fast t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999