A numerical study of the 2:1 planetary resonance
نویسندگان
چکیده
We numerically explore the long-term stability of planetary orbits locked in a 2:1 mean motion resonance for a wide range of planetary mass ratios and orbital parameters. Our major tool is Laskar’s frequency map analysis. Regions of low diffusion rate are outlined in a phase space defined by the two planetary eccentricities and the libration amplitude of a critical resonance argument. Resonant systems that are dynamically stable on a long timescale must lie within these regions. The resonance locking between planets in high eccentric orbits may be destroyed by mutual close encounters. We discuss various dynamical protection mechanisms related to the resonant configuration, among which is the well-known apsidal corotation. In the case of moderate-to-low eccentricities, we find that apsidal circulators, little discussed till now, are very common among stable orbits. We also map the different types of resonant behaviour predicted by analytical theories in the phase space.
منابع مشابه
Resonance Trapping in Protoplanetary Disks
Mean-motion resonances (MMRs) are likely to play an important role both during and after the lifetime of the protostellar gas disk. We study the dynamical evolution and stability of planetary systems containing two initially circular giant planets near 2:1 resonance and closer. We find that in addition to the 2:1, planets can capture into the 5:3 and 3:2. We use direct numerical integrations of...
متن کاملStable 1:2 Resonant Periodic Orbits in Elliptic Three-Body Systems
The results of an extensive numerical study of the periodic orbits of planar, elliptic restricted three-body planetary systems consisting of a star, an inner massive planet and an outer mass-less body in the external 1:2 mean-motion resonance are presented. Using the method of differential continuation, the locations of the resonant periodic orbits of such systems are identified and through an ...
متن کاملar X iv : a st ro - p h / 03 01 35 3 v 4 2 7 Fe b 20 03 The Apsidal Antialignment of the HD 82943 System †
We perform numerical simulations to explore the dynamical evolution of the HD 82943 planetary system. By simulating diverse planetary configurations, we find two mechanisms of stabilizing the system: the 2:1 mean motion resonance between the two planets can act as the first mechanism for all stable orbits. The second mechanism is a dynamical antialignment of the apsidal lines of the orbiting pl...
متن کاملResonance Trapping in Protoplanetary Disks. I. Coplanar Systems
Mean-motion resonances (MMRs) are likely to play an important role both during and after the lifetime of a protostellar gas disk. We study the dynamical evolution and stability of planetary systems containing two giant planets on circular orbits near a 2:1 resonance and closer. We find that by having the outer planet migrate inward, the two planets can capture into either the 2:1, 5:3, or 3:2 M...
متن کاملStability of the Directly Imaged Multiplanet System Hr 8799: Resonance and Masses
A new era of directly imaged extrasolar planets has produced a three-planet system (Marois et al. 2008), where the masses of the planets have been estimated by untested cooling models. We point out that the nominal circular, face-on orbits of the planets lead to a dynamical instability in ∼ 10 yr, a factor of at least 100 shorter than the estimated age of the star. Relaxing the face-on assumpti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006