Nanoscale thickness double-gated field effect silicon sensors for sensitive pH detection in fluid
نویسندگان
چکیده
In this work, we report on the optimization of a double-gate silicon-on-insulator field effect device operation to maximize pH sensitivity. The operating point can be fine tuned by independently biasing the fluid and the back gate of the device. Choosing the bias points such that device is nearly depleted results in an exponential current response—in our case, 0.70 decade per unit change in pH. This value is comparable to results obtained with devices that have been further scaled in width, reported at the forefront of the field, and close to the ideal value of 1 decade /pH. By using a thin active area, sensitivity is increased due to increased coupling between the two conducting surfaces of the devices. © 2008 American Institute of Physics. DOI: 10.1063/1.2920776
منابع مشابه
A simulation study on the performance of various label-free electronic biosensors
The efficient detection of charged biomolecules by biosensor with appropriate semiconducting nanomaterials and with optimum device geometry has caught tremendous research interest in the present decade. Here, the performance of various label-free electronic biosensors to detect bio-molecules is investigated by simulation technique. Silicon nanowire sensor, nanosphere sensor and double gate fiel...
متن کاملA simulation study on the performance of various label-free electronic biosensors
The efficient detection of charged biomolecules by biosensor with appropriate semiconducting nanomaterials and with optimum device geometry has caught tremendous research interest in the present decade. Here, the performance of various label-free electronic biosensors to detect bio-molecules is investigated by simulation technique. Silicon nanowire sensor, nanosphere sensor and double gate fiel...
متن کاملHigh-k dielectric Al₂O₃ nanowire and nanoplate field effect sensors for improved pH sensing.
Over the last decade, field-effect transistors (FETs) with nanoscale dimensions have emerged as possible label-free biological and chemical sensors capable of highly sensitive detection of various entities and processes. While significant progress has been made towards improving their sensitivity, much is yet to be explored in the study of various critical parameters, such as the choice of a se...
متن کاملHigh-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing
Over the last decade, field-effect transistors (FETs) with nanoscale dimensions have emerged as possible label-free biological and chemical sensors capable of highly sensitive detection of various entities and processes. While significant progress has been made towards improving their sensitivity, much is yet to be explored in the study of various critical parameters, such as the choice of a se...
متن کاملElectrical Detection of Nucleic Acid Amplification Using an On-Chip Quasi-Reference Electrode and a PVC REFET
Electrical detection of nucleic acid amplification through pH changes associated with nucleotide addition enables miniaturization, greater portability of testing apparatus, and reduced costs. However, current ion-sensitive field effect transistor methods for sensing nucleic acid amplification rely on establishing the fluid gate potential with a bulky, difficult to microfabricate reference elect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008