Decision Procedures for Recursive Data Structures with Integer Constraints

نویسندگان

  • Ting Zhang
  • Henny B. Sipma
  • Zohar Manna
چکیده

This paper is concerned with the integration of recursive data structures with Presburger arithmetic. The integrated theory includes a length function on data structures, thus providing a tight coupling between the two theories, and hence the general Nelson-Oppen combination method for decision procedures is not applicable to this theory, even for the quantifier-free case. We present four decision procedures for the integrated theory depending on whether the language has infinitely many constants and whether the theory has quantifiers. Our decision procedures for quantifier-free theories are based on Oppen’s algorithm for acyclic recursive data structures with infinite atom domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decision procedures for term algebras with integer constraints

Term algebras can model recursive data structures which are widely used in programming languages. To verify programs we must be able to reason about these structures. However, as programming languages often involve multiple data domains, in program verification decision procedures for a single theory are usually not applicable. An important class of mixed constraints consists of combinations of...

متن کامل

Deciding and Interpolating Algebraic Data Types by Reduction (Technical Report)

Recursive algebraic data types (term algebras, ADTs) are one of the most well-studied theories in logic, and find application in contexts including functional programming, modelling languages, proof assistants, and verification. At this point, several state-of-the-art theorem provers and SMT solvers include tailor-made decision procedures for ADTs, and version 2.6 of the SMT-LIB standard includ...

متن کامل

Recursive Assertions for Data Structures

We present an assertion language for expressing properties of data structures. Its key features are constraints over arrays, multisets and integers which allow the specification of basic assertions, and rules, which allow the recursive specification of assertions. This language can thus be used to define assertions to an arbitrary level of expressiveness, ranging from low-level properties of me...

متن کامل

Online Proof-Producing Decision Procedure for Mixed-Integer Linear Arithmetic?

Efficient decision procedures for arithmetic play a very important role in formal verification. In practical examples, however, arithmetic constraints are often mixed with constraints from other theories like the theory of arrays, Boolean satisfiability (SAT), bit-vectors, etc. Therefore, decision procedures for arithmetic are especially useful in combination with other decision procedures. The...

متن کامل

AIOSC: Analytical Integer Word-length Optimization based on System Characteristics for Recursive Fixed-point LTI Systems

The integer word-length optimization known as range analysis (RA) of the fixed-point designs is a challenging problem in high level synthesis and optimization of linear-time-invariant (LTI) systems. The analysis has significant effects on the resource usage, accuracy and efficiency of the final implementation, as well as the optimization time. Conventional methods in recursive LTI systems suffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004