Stochastic Computing with Spiking Neural P Systems
نویسندگان
چکیده
This paper presents a new computational framework to address the challenges in deeply scaled technologies by implementing stochastic computing (SC) using the Spiking Neural P (SN P) Systems. SC is well known for its high fault tolerance and its ability to compute complex mathematical operations using minimal amount of resources. However, one of the key issues for SC is data correlation. This computation can be abstracted and elegantly modeled by using SN P systems where the stochastic bit-stream can be generated through the neurons spiking. Furthermore, since SN P systems are not affected by data correlations, this effectively mitigate the accuracy issue in the ordinary SC circuitry. A new stochastic scaled addition realized using SN P systems is reported at the end of this paper. Though the work is still at the early stage of investigation, we believe this study will provide insights to future IC design development.
منابع مشابه
The Stochastic Loss of Spikes in Spiking Neural P Systems: Design and Implementation of Reliable Arithmetic Circuits
Spiking neural P systems (in short, SN P systems) have been introduced as computing devices inspired by the structure and functioning of neural cells. The presence of unreliable components in SN P systems can be considered in many different aspects. In this paper we focus on two types of unreliability: the stochastic delays of the spiking rules and the stochastic loss of spikes. We propose the ...
متن کاملHomogeneous Spiking Neural P Systems
Spiking neural P systems are a class of distributed parallel computing models inspired from the way the neurons communicate with each other by means of electrical impulses (called “spikes”). In this paper, we consider a restricted variant of spiking neural P systems, called homogeneous spiking neural P systems, where each neuron has the same set of rules. The universality of homogeneous spiking...
متن کاملSpiking Neural P Systems with Anti-Spikes as Transducers
In this paper, we consider spiking neural P systems with antispikes. Because of the use of two types of objects, the system can encode the binary digits in a natural way and hence represent the formal models more efficiently and naturally than the standard SN P systems. This work deals with the computing power of spiking neural P system with anti-spikes. It is demonstrated that, as transducers,...
متن کاملNeural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by s...
متن کاملExtended Spiking Neural P Systems
We consider extended variants of spiking neural P systems and show how these extensions of the original model allow for easy proofs of the computational completeness of extended spiking neural P systems and for the characterization of semilinear sets and regular languages by finite extended spiking neural P systems (defined by having only finite checking sets in the rules assigned to the cells)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. UCS
دوره 23 شماره
صفحات -
تاریخ انتشار 2017