Filter Characteristics in Image Decomposition with Singular Spectrum Analysis
نویسندگان
چکیده
Singular spectrum analysis is developed as a nonparametric spectral decomposition of a time series. It can be easily extended to the decomposition of multidimensional lattice-like data through the filtering interpretation. In this viewpoint, the singular spectrum analysis can be understood as the adaptive and optimal generation of the filters and their two-step point-symmetric operation to the original data. In this paper, we point out that, when applied to the multidimensional data, the adaptively generated filters exhibit symmetry properties resulting from the bisymmetric nature of the lag-covariance matrices. The eigenvectors of the lag-covariance matrix are either symmetric or antisymmetric, and for the 2D image data, these lead to the differentialtype filters with evenor odd-order derivatives. The dominant filter is a smoothing filter, reflecting the dominance of low-frequency components of the photo images. The others are the edge-enhancement or the noise filters corresponding to the band-pass or the high-pass filters. The implication of the decomposition to the image denoising is briefly discussed. Department of Physics, Nara Women’s University, Nara 630-8506, Japan. Research Center for Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan
منابع مشابه
Estimation of Bayer CFA pattern configuration based on singular value decomposition
An image sensor can measure only one color per pixel through the color filter array. Missing pixels are estimated using an interpolation process. For this reason, a captured pixel and interpolated pixel have different statistical characteristics. Because the pattern of a color filter array is changed when the image is manipulated or forged, this pattern change can be a clue to detect image forg...
متن کاملSelection of Optimal Decomposition Layer for Thresholding Denoising Using Singular Spectrum Analysis and Wavelet Entropy
To optimize the number of decomposition layers in wavelet threshold denoising for ultrasonic signals, we propose a self-adaptive algorithm of determining the number of decomposition layers based on singular spectrum analysis and wavelet entropy. First the noise-containing signals are decomposed by discrete wavelet transform. The slope of the singular value spectrum for each layer is estimated. ...
متن کاملSingular Value Decomposition based Steganography Technique for JPEG2000 Compressed Images
In this paper, a steganography technique for JPEG2000 compressed images using singular value decomposition in wavelet transform domain is proposed. In this technique, DWT is applied on the cover image to get wavelet coefficients and SVD is applied on these wavelet coefficients to get the singular values. Then secret data is embedded into these singular values using scaling factor. Different com...
متن کاملDisguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملA New SVD based Hybrid Color Image Watermarking for Copyright Protection using Contourlet Transform
The authors propose a new hybrid watermarking scheme for copyright protection of color images using contourlet transform and singular value decomposition. The host color image and color watermark images are decomposed into directional subbands using contourlet transform and then applied Singular value decomposition to mid frequency subband coefficients. The singular values of mid frequency subb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advances in Adaptive Data Analysis
دوره 8 شماره
صفحات -
تاریخ انتشار 2016