Nonadiabatic Electron Transfer in the Condensed Phase , via Semiclassical and Langevin Equation Approach

نویسندگان

  • XiaoGeng Song
  • Troy Van Voorhis
  • Jianshu Cao
  • Moungi Bawendi
چکیده

In this dissertation, we discuss two methods developed during my PhD study to simulate electron transfer systems. The first method, the semi-classical approximation, is derived from the stationary phase approximation to the path integral in the spin-coherent representation. The resulting equation of motion is a classical-like ordinary differential equation subject to a two-ended boundary condition. The boundary value problem is solved using the "near real trajectory" algorithm. This method is applied to three scattering problems to compute the transmission and reflection probabilities. The strength and weakness of this approach is investigated in details. The second approach is based on the generalized Langevin equation, in which the quantum transitions of electronic states are condensed into a linear regression equation. The memory kernel in the regression equation is computed using a second perturbation expansion. The perturbation is optimized to achieve the best convergence of the second order expansion. This procedure results in a tow-hop Langevin equation, the THLE. Results from a spin-boson system validate the THLE in a wide range of parameter regimes. Lastly, we tested the feasibility of using Monte Carlo sampling to compute the memory kernel from the spin-boson system and proposed a smoothing technique to reduce the number of sampling points. Thesis Supervisor: Troy Van Voorhis Title: Associate Professor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations

In this paper, we explore in detail the way in which quantum decoherence is treated in different mixed quantum-classical molecular dynamics algorithms. The quantum decoherence time proves to be a key ingredient in the production of accurate nonadiabatic dynamics from computer simulations. Based on a short time expansion to a semiclassical golden rule expression due to Neria and Nitzan @J. Chem....

متن کامل

Steepest Descent Path Study of Electron-Transfer Reactions†

A nonadiabatic steepest descent path method is developed as a qualitative tool to analyze and characterize three different kinetic regimes of electron transfer. In this approach, Miller’s semiclassical instanton solution and Pechukas’ self-consistent treatment of nonadiabatic coupling are applied to the path integral representation of the two-state diffusion equation. The resulting steepest des...

متن کامل

The Role of Dephasing in the Assessment of DMRI through Langevin Equation Approach

Introduction: Diffusion Weighted Magnetic Resonance Imaging (DWMRI) provides visual contrast, depends on Brownian motion of water molecules. The diffusive behavior of water in cells alters in many disease states. Dephasing is a factor of magnetic field inhomogeneity, heterogeneity of tissue and etc., which is associated with the signal amplitude. In a series of DWI acquisition...

متن کامل

Application of a multilevel Redfield theory to electron transfer in condensed phases

Articles you may be interested in Stochastic unraveling of Redfield master equations and its application to electron transfer problems Generalized quantum Fokker–Planck theory and its application to laser driven intramolecular hydrogen transfer reactions in condensed phases Dielectric friction and the transition from adiabatic to nonadiabatic electron transfer in condensed phases. II. Applicati...

متن کامل

Nonadiabatic processes involving quantum-like and classical-like coordinates with applications to nonadiabatic electron transfers

Nonadiabatic processes may involve both classical-like and quantum-like coordinates. A semiclassical analysis is used to treat the contribution of the former to the Franck-Condon factor in the reaction rate expression, thereby avoiding the usual harmonic oscillator approximation. Microcanonical and canonical rate constants are calculated, yielding an expression which includes contributions from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009