Influence of Equatorial Diatom Processes on Si Deposition and Atmospheric CO(2) Cycles at Glacial/Interglacial Timescales

نویسندگان

  • R. C. Dugdale
  • M. Lyle
  • F. P. Wilkerson
  • Fei Chai
  • R. T. Barber
  • T. H. Peng
  • F. Chai
  • T.-H. Peng
چکیده

[1] The causes of the glacial cycle remain unknown, although the primary driver is changes in atmospheric CO2, likely controlled by the biological pump and biogeochemical cycles. The two most important regions of the ocean for exchange of CO2 with the atmosphere are the equatorial Pacific and the Southern Ocean (SO), the former a net source and the latter a net sink under present conditions. The equatorial Pacific has been shown to be a Si(OH)4-limited ecosystem, a consequence of the low source Si(OH)4 concentrations in upwelled water that has its origin in the SO. This teleconnection for nutrients between the two regions suggests an oscillatory relationship that may influence or control glacial cycles. Opal mass accumulation rate (MAR) data and dN measurements in equatorial cores are interpreted with predictions from a one-dimensional Si(OH)4-limited ecosystem model (CoSINE) for the equatorial Pacific. The results suggest that equatorial Pacific surface CO2 processes are in opposite phase to that of the global atmosphere, providing a negative feedback to the glacial cycle. This negative feedback is implemented through the effect of the SO on the equatorial Si(OH)4 supply. An alternative hypothesis, that the whole ocean becomes Si(OH)4 poor during cooling periods, is suggested by low opal MAR in cores from both equatorial and Antarctic regions, perhaps as a result of low river input. terminations in this scenario would result from blooms of coccolithophorids triggered by low Si(OH)4 concentrations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opal burial in the equatorial Atlantic Ocean over the last 30 ka: Implications for glacial-interglacial changes in the ocean silicon cycle

[1] The Silicic Acid Leakage Hypothesis (SALH) suggests that, during glacial periods, excess silicic acid was transported from the Southern Ocean to lower latitudes, which favored diatom production over coccolithophorid production and caused a drawdown of atmospheric CO2. Downcore records of Th-normalized opal fluxes and Pa/Th ratios from seven equatorial Atlantic cores were used to reconstruct...

متن کامل

Modeling the response of the oceanic Si inventory to perturbation, and consequences for atmospheric CO2

[1] It has been suggested that much of the observed glacial-interglacial variability in the atmospheric mixing ratio of CO2 (xCO2) could potentially be driven by a perturbation of the marine Si cycle. To date, only relatively simple steady-state analysis has been made of this hypothesis. In this study, we develop a description of the ocean carbon cycle, incorporating novel descriptions for the ...

متن کامل

Persistent millennial-scale link between Greenland climate and northern Pacific Oxygen Minimum Zone under interglacial conditions

The intensity and/or extent of the northeastern Pacific Oxygen Minimum Zone (OMZ) varied in-phase with the Northern Hemisphere high latitude climate on millennial timescales during the last glacial period, indicating the occurrence of atmospheric and oceanic connections under glacial conditions. While millennial variability was reported for both the Greenland and the northern Atlantic Ocean dur...

متن کامل

A corollary to the silicic acid leakage hypothesis

[1] The silicic acid leakage hypothesis (SALH) attempts to explain part of the large and regular atmospheric CO2 changes over the last glacial-interglacial cycles. It calls for a reduction in the carbonate pump through a growth in diatoms at the expense of coccolithophorids in low-latitude surface waters, driven by a ‘‘leakage’’ of high-Si:N waters from the Southern Ocean. Recent studies that p...

متن کامل

In and out of glacial extremes by way of dust−climate feedbacks

Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial-interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times highe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004