A functional-phylogenetic classification system for transmembrane solute transporters.
نویسنده
چکیده
A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional assignments of newly sequenced transport proteins that will result from future genome sequencing projects.
منابع مشابه
Emergence of species-specific transporters during evolution of the hemiascomycete phylum.
We have traced the evolution patterns of 2480 transmembrane transporters from five complete genome sequences spanning the entire Hemiascomycete phylum: Saccharomyces cerevisiae, Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, and Yarrowia lipolytica. The use of nonambiguous functional and phylogenetic criteria derived from the TCDB classification system has allowed the identifica...
متن کاملCorrelation of Aquaporins and Transmembrane Solute Transporters Revealed by Genome-Wide Analysis in Developing Maize Leaf
Aquaporins are multifunctional membrane channels that facilitate the transmembrane transport of water and solutes. When transmembrane mineral nutrient transporters exhibit the same expression patterns as aquaporins under diverse temporal and physiological conditions, there is a greater probability that they interact. In this study, genome-wide temporal profiling of transcripts analysis and coex...
متن کاملNovel Dicarboxylate Selectivity in an Insect Glutamate Transporter Homolog
Mammals express seven transporters from the SLC1 (solute carrier 1) gene family, including five acidic amino acid transporters (EAAT1-5) and two neutral amino acid transporters (ASCT1-2). In contrast, insects of the order Diptera possess only two SLC1 genes. In this work we show that in the mosquito Culex quinquefasciatus, a carrier of West Nile virus, one of its two SLC1 EAAT-like genes encode...
متن کاملStructural and functional dynamics of Excitatory Amino Acid Transporters (EAAT)
Glutamate transporters control the glutamate homeostasis in the central nervous system, and, thus, are not only crucial for physiological excitatory synaptic signaling, but also for the prevention of a large number of neurodegenerative diseases that are associated with excessive and prolonged presence of the neurotransmitter glutamate in the extracellular space. Until now, five subtypes of high...
متن کاملAtypical Solute Carriers Identification, evolutionary conservation, structure and histology of novel membrane-bound transporters
Perland, E. 2017. Atypical Solute Carriers. Identification, evolutionary conservation, structure and histology of novel membrane-bound transporters. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1346. 49 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0015-3. Solute carriers (SLCs) constitute the largest family of membrane-bound transporter p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology and molecular biology reviews : MMBR
دوره 64 2 شماره
صفحات -
تاریخ انتشار 2000