The Ginzburg-Landau Theory of Type II superconductors in magnetic field
نویسندگان
چکیده
Thermodynamics of type II superconductors in electromagnetic field based on the Ginzburg Landau theory is presented. The Abrikosov flux lattice solution is derived using an expansion in a parameter characterizing the ”distance” to the superconductor normal phase transition line. The expansion allows a systematic improvement of the solution. The phase diagram of the vortex matter in magnetic field is determined in detail. In the presence of significant thermal fluctuations on the mesoscopic scale (for example in high Tc materials) the vortex crystal melts into a vortex liquid. A quantitative theory of thermal fluctuations using the lowest Landau level approximation is given. It allows to determine the melting line and discontinuities at melt, as well as important characteristics of the vortex liquid state. In the presence of quenched disorder (pinning) the vortex matter acquires certain ”glassy” properties. The irreversibility line and static properties of the vortex glass state are studied using the ”replica” method. Most of the analytical methods are introduced and presented in some detail. Various quantitative and qualitative features are compared to experiments in type II superconductors, although the use of a rather universal Ginzburg Landau theory is not restricted to superconductivity and can be applied with certain adjustments to other physical systems, for example rotating Bose Einstein condensate.
منابع مشابه
Statistical Physics (PHY831): Part 4: Ginzburg-Landau theory, modeling of dynamics and scaling in complex systems
London theory was developed by Fritz London in 1935 to describe the Meissner effect. This theory leads to the introduction of the penetration depth to describe the extent of magnetic field penetration, λ into type I superconductors. The penetration depth is also important in type II superconductors and describes the extent of flux penetration near vortices as well as at surfaces. Prior to his s...
متن کاملGinzburg-Landau theory of the superheating field anisotropy of layered superconductors
We investigate the effects of material anisotropy on the superheating field of layered superconductors. We provide an intuitive argument both for the existence of a superheating field, and its dependence on anisotropy, for κ = λ/ξ (the ratio of magnetic to superconducting healing lengths) both large and small. On the one hand, the combination of our estimates with published results using a two-...
متن کاملThe Vortex Lattice in Ginzburg-Landau Superconductors
Abrikosov’s solution of the linearized Ginzburg-Landau theory describing a periodic lattice of vortex lines in type-II superconductors at large inductions, is generalized to non-periodic vortex arrangements, e.g., to lattices with a vacancy surrounded by relaxing vortices and to periodically distorted lattices that are needed in the nonlocal theory of elasticity of the vortex lattice. Generaliz...
متن کاملMuon Spin Rotation and the Vortex Lattice in Superconductors
The magnetic field probability P (B) is calculated from Ginzburg-Landau theory for various lattices of vortex lines in type-II superconductors: Ideal triangular lattices, lattices with various shear strains and with a super lattice of vacancies, and lattices of short vortices in films whose magnetic field “mushrooms” near the surface.
متن کاملLow-magnetic-field critical behavior in strongly type-II superconductors.
A new description is proposed for the low-field critical behavior of type-II superconductors. The starting point is the Ginzburg-Landau theory in presence of an external magnetic field H. A set of fictitious vortex variables and a singular gauge transformation are used to rewrite a finite H Ginzburg-Landau functional in terms of a complex scalar field of zero average vorticity. The continuum li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009