Parametrized structure from motion for 3D adaptive feedback tracking of faces

نویسندگان

  • Tony Jebara
  • Alex Pentland
چکیده

A real-time system is described for automatically detecting, modeling and tracking faces in 3D. A closed loop approach is proposed which utilizes structure from motion to generate a 3D model of a face and then feed back the estimated structure to constrain feature tracking in the next frame. The system initializes by using skin classi cation, symmetry operations, 3D warping and eigenfaces to nd a face. Feature trajectories are then computed by SSD or correlation-based tracking. The trajectories are simultaneously processed by an extended Kalman lter to stably recover 3D structure, camera geometry and facial pose. Adaptively weighted estimation is used in this lter by modeling the noise characteristics of the 2D image patch tracking technique. In addition, the structural estimate is constrained by using parametrized models of facial structure (eigen-heads). The Kalman lter's estimate of the 3D state and motion of the face predicts the trajectory of the features which constrains the search space for the next frame in the video sequence. The feature tracking and Kalman ltering closed loop system operates at 30Hz.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametrized Structure from Motion for 3 D Adaptive

Submitted to CVPR November 1996 Parametrized Structure from Motion for 3D Adaptive Feedback Tracking of Faces Tony S. Jebara and Alex Pentland Media Laboratory, Massachusetts Institute of Technology Cambridge, MA 02139 November 28th, 1996 Abstract A real-time system is described for automatically detecting, modeling and tracking faces in 3D. A closed loop approach is proposed which utilizes str...

متن کامل

ADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS

This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...

متن کامل

Enhancement of Robust Tracking Performance via Switching Supervisory Adaptive Control

When the process is highly uncertain, even linear minimum phase systems must sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while preserving the robust stability. In this paper, the problem of supervisory based switching Quantitative Feedback Theory (QFT) control is proposed for the control of highly uncertain plants. According to this strategy, the unce...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS

In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...

متن کامل

Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997