Depth Not Needed - An Evaluation of RGB-D Feature Encodings for Off-Road Scene Understanding by Convolutional Neural Network
نویسندگان
چکیده
Scene understanding for autonomous vehicles is a challenging computer vision task, with recent advances in convolutional neural networks (CNNs) achieving results that notably surpass prior traditional feature driven approaches. However, limited work investigates the application of such methods either within the highly unstructured off-road environment or to RGBD input data. In this work, we take an existing CNN architecture designed to perform semantic segmentation of RGB images of urban road scenes, then adapt and retrain it to perform the same task with multichannel RGBD images obtained under a range of challenging off-road conditions. We compare two different stereo matching algorithms and five different methods of encoding depth information, including disparity, local normal orientation and HHA (horizontal disparity, height above ground plane, angle with gravity), to create a total of ten experimental variations of our dataset, each of which is used to train and test a CNN so that classification performance can be evaluated against a CNN trained using standard RGB input.
منابع مشابه
Depth CNNs for RGB-D scene recognition: learning from scratch better than transferring from RGB-CNNs
Scene recognition with RGB images has been extensively studied and has reached very remarkable recognition levels, thanks to convolutional neural networks (CNN) and large scene datasets. In contrast, current RGB-D scene data is much more limited, so often leverages RGB large datasets, by transferring pretrained RGB CNN models and fine-tuning with the target RGB-D dataset. However, we show that ...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملCombining Models from Multiple Sources for RGB-D Scene Recognition
Depth can complement RGB with useful cues about object volumes and scene layout. However, RGB-D image datasets are still too small for directly training deep convolutional neural networks (CNNs), in contrast to the massive monomodal RGB datasets. Previous works in RGB-D recognition typically combine two separate networks for RGB and depth data, pretrained with a large RGB dataset and then fine ...
متن کاملSegNet: A Deep Convolutional Encoder-Decoder Architecture for Scene Segmentation
We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG...
متن کاملLearning to Look around Objects for Top-View Representations of Outdoor Scenes
Given a single RGB image of a complex outdoor road scene in the perspective view, we address the novel problem of estimating an occlusion-reasoned semantic scene layout in the top-view. This challenging problem not only requires an accurate understanding of both the 3D geometry and the semantics of the visible scene, but also of occluded areas. We propose a convolutional neural network that lea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.01235 شماره
صفحات -
تاریخ انتشار 2017