A furosemide-sensitive K+-Cl- cotransporter counteracts intracellular Cl- accumulation and depletion in cultured rat midbrain neurons.
نویسندگان
چکیده
Efficacy of postsynaptic inhibition through GABAA receptors in the mammalian brain depends on the maintenance of a Cl- gradient for hyperpolarizing Cl- currents. We have taken advantage of the reduced complexity under which Cl- regulation can be investigated in cultured neurons as opposed to neurons in other in vitro preparations of the mammalian brain. Tightseal whole-cell recording of spontaneous GABAA receptor-mediated postsynaptic currents suggested that an outward Cl- transport reduced dendritic [Cl-]i if the somata of cells were loaded with Cl- via the patch pipette. We determined dendritic and somatic reversal potentials of Cl- currents induced by focally applied GABA to calculate [Cl-]i during variation of [K+]o and [Cl-] in the patch pipette. [Cl-]i and [K+]o were tightly coupled by a furosemide-sensitive K+-Cl- cotransport. Thermodynamic considerations excluded the significant contribution of a Na+-K+-Cl- cotransporter to the net Cl- transport. We conclude that under conditions of normal [K+]o the K+-Cl- cotransporter helps to maintain [Cl-]i at low levels, whereas under pathological conditions, under which [K+]o remains elevated because of neuronal hyperactivity, the cotransporter accumulates Cl- in neurons, thereby further enhancing neuronal excitability.
منابع مشابه
Na+-K+-2Cl- cotransporter in immature cortical neurons: A role in intracellular Cl- regulation.
Na+-K+-2Cl- cotransporter has been suggested to contribute to active intracellular Cl- accumulation in neurons at both early developmental and adult stages. In this report, we extensively characterized the Na+-K+-2Cl- cotransporter in primary culture of cortical neurons that were dissected from cerebral cortex of rat fetus at embryonic day 17. The Na+-K+-2Cl- cotransporter was expressed abundan...
متن کامل[Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons].
The regulatory mechanisms of intracellular Cl- concentration ([Cl-]i) were investigated in the lateral superior olive (LSO) neurons of various developmental stages by taking advantage of gramicidin perforated patch recording mode, which enables neuronal [Cl-]i measurement. Responses to glycine changed from depolarization to hyperpolarization during the second week after birth, resulting from [C...
متن کاملPotassium-coupled chloride cotransport controls intracellular chloride in rat neocortical pyramidal neurons.
Chloride (Cl(-)) homeostasis is critical for many cell functions including cell signaling and volume regulation. The action of GABA at GABA(A) receptors is primarily determined by the concentration of intracellular Cl(-). Developmental regulation of intracellular Cl(-) results in a depolarizing response to GABA in immature neocortical neurons and a hyperpolarizing or shunting response in mature...
متن کاملReversibility and cation selectivity of the K(+)-Cl(-) cotransport in rat central neurons.
The reversibility and cation selectivity of the K(+)-Cl(-) cotransporter (KCC), which normally extrudes Cl(-) out of neurons, was investigated in dissociated lateral superior olive neurons of rats using the gramicidin perforated patch technique. Intracellular Cl(-) activity (alpha[Cl(-)](i)) was maintained well below electrochemical equilibrium as determined from the extracellular Cl(-) activit...
متن کاملReduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury.
After axotomy, application of muscimol, a GABA(A) receptor agonist, induced an increase in intracellular Ca(2+) ([Ca(2+)](i)) in dorsal motor neurons of the vagus (DMV neurons). Elevation of [Ca(2+)](i) by muscimol was blocked by bicuculline, tetrodotoxin, and Ni(2+). In axotomized DMV neurons measured with gramicidin perforated-patch recordings, reversal potentials of the GABA(A) receptor-medi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 12 شماره
صفحات -
تاریخ انتشار 1999