Information Projection and Approximate Inference for Structured Sparse Variables

نویسندگان

  • Rajiv Khanna
  • Joydeep Ghosh
  • Russell A. Poldrack
  • Oluwasanmi Koyejo
چکیده

Approximate inference via information projection has been recently introduced as a generalpurpose technique for efficient probabilistic inference given sparse variables. This manuscript goes beyond classical sparsity by proposing efficient algorithms for approximate inference via information projection that are applicable to any structure on the set of variables that admits enumeration using matroid or knapsack constraints. Further, leveraging recent advances in submodular optimization, we provide an efficient greedy algorithm with strong optimization-theoretic guarantees. The class of probabilistic models that can be expressed in this way is quite broad and, as we show, includes group sparse regression, group sparse principal components analysis and sparse collective matrix factorization, among others. Empirical results on simulated data and high dimensional neuroimaging data highlight the superior performance of the information projection approach as compared to established baselines for a range of probabilistic models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Prior Distributions and Approximate Inference for Structured Variables

We present a general framework for constructing prior distributions with structured variables. The prior is defined as the information projection of a base distribution onto distributions supported on the constraint set of interest. In cases where this projection is intractable, we propose a family of parameterized approximations indexed by subsets of the domain. We further analyze the special ...

متن کامل

Structured Variational Inference for Coupled Gaussian Processes

Sparse variational approximations allow for principled and scalable inference in Gaussian Process (GP) models. In settings where several GPs are part of the generative model, these GPs are a posteriori coupled. For many applications such as regression where predictive accuracy is the quantity of interest, this coupling is not crucial. Howewer if one is interested in posterior uncertainty, it ca...

متن کامل

Structured Message Passing

In this paper, we present structured message passing (SMP), a unifying framework for approximate inference algorithms that take advantage of structured representations such as algebraic decision diagrams and sparse hash tables. These representations can yield significant time and space savings over the conventional tabular representation when the message has several identical values (context-sp...

متن کامل

Approximate Learning for Structured Prediction Problems

Prediction problems such as image segmentation, sentence parsing, and gene prediction involve complex output spaces for which multiple decisions must be coordinated to achieve optimal results. Unfortunately, this means that there are generally an exponential number of possible predictions for every input. Markov random fields can be used to express structure in these output spaces, reducing the...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017