Quantum Inspired Swarm Optimization for Multi-Level Image Segmentation Using BDSONN Architecture

نویسنده

  • Subhadip Chandra
چکیده

This chapter is intended to propose a quantum inspired self-supervised image segmentation method by quantum-inspired particle swarm optimization algorithm and quantum-inspired ant colony optimization algorithm, based on optimized MUSIG (OptiMUSIG) activation function with a bidirectional self-organizing neural network architecture to segment multi-level grayscale images. The proposed quantum-inspired swarm optimization-based methods are applied on three standard grayscale images. The performances of the proposed methods are demonstrated in comparison with their conventional counterparts. Experimental results are reported in terms of fitness value, computational time, and class boundaries for both methods. It has been noticed that the quantum-inspired meta-heuristic method is superior in terms of computational time in comparison to its conventional counterpart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-level thresholding using quantum inspired meta-heuristics

Image thresholding is well accepted and one of the most imperative practices to accomplish image segmentation. This has been widely studied over the past few decades. However, as the multi-level thresholding computationally takes more time when level increases, hence, in this article, quantum mechanism is used to propose six different quantum inspired meta-heuristic methods for performing multi...

متن کامل

I – Scientific Activity during Your Fellowship

Image thresholding is well accepted and one of the most imperative practices to accomplish image segmentation. This has been widely studied over the past few decades. However, as the multi-level thresholding computationally takes more time when level increases, hence, in this article, quantum mechanism is used to propose six different quantum inspired meta-heuristic methods for performing multi...

متن کامل

Quantum-inspired particle swarm optimization algorithm with performance evaluation of fused images

In order to improve and accelerate the speed of image integration, an optimal and intelligent method for multi-focus image fusion is presented in this paper. Based on particle swarm optimization and quantum theory, quantum particle swarm optimization (QPSO) intelligent search strategy is introduced in salience analysis of a contrast visual masking system, combined with the segmentation techniqu...

متن کامل

A Comparison of Nature Inspired Algorithms for Multi-threshold Image Segmentation

In the field of image analysis, segmentation is one of the most important preprocessing steps. One way to achieve segmentation is by mean of threshold selection, where each pixel that belongs to a determined class is labeled according to the selected threshold, giving as a result pixel groups that share visual characteristics in the image. Several methods have been proposed in order to solve th...

متن کامل

A Type II Fuzzy Entropy Based Multi-Level Image Thresholding Using Adaptive Plant Propagation Algorithm

One of the most straightforward, direct and efficient approaches to Image Segmentation is Image Thresholding. Multi-level Image Thresholding is an essential viewpoint in many image processing and Pattern Recognition based real-time applications which can effectively and efficiently classify the pixels into various groups denoting multiple regions in an Image. Thresholding based Image Segmentati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016