Flexible and Robust Bayesian Classification by Finite Mixture Models

نویسندگان

  • Cédric Archambeau
  • Frédéric Vrins
  • Michel Verleysen
چکیده

The regularized Mahalanobis distance is proposed in the framework of finite mixture models to avoid commonly faced numerical difficulties encountered with EM. Its principle is applied to Gaussian and Student-t mixtures, resulting in reliable density estimates, the model complexity being kept low. Besides, the regularized models are robust to various noise types. Finally, it is shown that the quality of the associated Bayesian classification is near optimal on Ripley’s synthetic data set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

‎A Bayesian mixture model‎ for classification of certain and uncertain data

‎There are different types of classification methods for classifying the certain data‎. ‎All the time the value of the variables is not certain and they may belong to the interval that is called uncertain data‎. ‎In recent years‎, ‎by assuming the distribution of the uncertain data is normal‎, ‎there are several estimation for the mean and variance of this distribution‎. ‎In this paper‎, ‎we co...

متن کامل

H∞ Robust Controller Design and Experimental Analysis of Active Magnetic Bearings with Flexible Rotor System

H∞ controller for active magnetic bearings (AMBs) with flexible rotor system was designed in this paper. The motion equations of AMBs and flexible rotor system are built based on finite element methods (FEM). Weighting function matrices of H∞ controller for AMBs are studied for both the sensitivity and the complementary sensitivity of H∞ control theory. The simulation shows that the H∞ control ...

متن کامل

Variational Bayes for Hierarchical Mixture Models

In recent years, sparse classification problems have emerged in many fields of study. Finite mixture models have been developed to facilitate Bayesian inference where parameter sparsity is substantial. Classification with finite mixture models is based on the posterior expectation of latent indicator variables. These quantities are typically estimated using the expectation-maximization (EM) alg...

متن کامل

Robust Method for E-Maximization and Hierarchical Clustering of Image Classification

We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004