R1SVM: A Randomised Nonlinear Approach to Large-Scale Anomaly Detection
نویسندگان
چکیده
The problem of unsupervised anomaly detection arises in a wide variety of practical applications. While one-class support vector machines have demonstrated their effectiveness as an anomaly detection technique, their ability to model large datasets is limited due to their memory and time complexity for training. To address this issue for supervised learning of kernel machines, there has been growing interest in random projection methods as an alternative to the computationally expensive problems of kernel matrix construction and support vector optimisation. In this paper we leverage the theory of nonlinear random projections and propose the Randomised One-class SVM (R1SVM), which is an efficient and scalable anomaly detection technique that can be trained on largescale datasets. Our empirical analysis on several real-life and synthetic datasets shows that our randomised 1SVM algorithm achieves comparable or better accuracy to deep autoencoder and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.
منابع مشابه
A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملR1STM: One-class Support Tensor Machine with Randomised Kernel
Identifying unusual or anomalous patterns in an underlying dataset is an important but challenging task in many applications. The focus of the unsupervised anomaly detection literature has mostly been on vectorised data. However, many applications are more naturally described using higher-order tensor representations. Approaches that vectorise tensorial data can destroy the structural informati...
متن کاملA multiscale hypothesis testing approach to anomaly detection and localization from noisy tomographic data
In this paper, we investigate the problems of anomaly detection and localization from noisy tomographic data. These are characteristic of a class of problems that cannot be optimally solved because they involve hypothesis testing over hypothesis spaces with extremely large cardinality. Our multiscale hypothesis testing approach addresses the key issues associated with this class of problems. A ...
متن کاملA Multiscale Hypothesis Testing Approach To Anomaly Detection And Localization From Noisy Tomographi - Image Processing, IEEE Transactions on
In this paper, we investigate the problems of anomaly detection and localization from noisy tomographic data. These are characteristic of a class of problems that cannot be optimally solved because they involve hypothesis testing over hypothesis spaces with extremely large cardinality. Our multiscale hypothesis testing approach addresses the key issues associated with this class of problems. A ...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015