Protein kinase IKKβ-catalyzed phosphorylation of IRF5 at Ser462 induces its dimerization and nuclear translocation in myeloid cells.
نویسندگان
چکیده
The siRNA knockdown of IFN Regulatory Factor 5 (IRF5) in the human plasmacytoid dendritic cell line Gen2.2 prevented IFNβ production induced by compound CL097, a ligand for Toll-like receptor 7 (TLR7). CL097 also stimulated the phosphorylation of IRF5 at Ser462 and stimulated the nuclear translocation of wild-type IRF5, but not the IRF5[Ser462Ala] mutant. The CL097-stimulated phosphorylation of IRF5 at Ser462 and its nuclear translocation was prevented by the pharmacological inhibition of protein kinase IKKβ or the siRNA knockdown of IKKβ or its "upstream" activator, the protein kinase TAK1. Similar results were obtained in a murine macrophage cell line stimulated with the TLR7 agonist compound R848 or the nucleotide oligomerization domain 1 (NOD1) agonist KF-1B. IKKβ phosphorylated IRF5 at Ser462 in vitro and induced the dimerization of wild-type IRF5 but not the IRF5[S462A] mutant. These findings demonstrate that IKKβ activates two "master" transcription factors of the innate immune system, IRF5 and NF-κB.
منابع مشابه
VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملIRF5 is a target of BCR-ABL kinase activity and reduces CML cell proliferation.
Interferon regulatory factor 5 (IRF5) modulates the expression of genes controlling cell growth and apoptosis. Previous findings have suggested a lack of IRF5 transcripts in both acute and chronic leukemias. However, to date, IRF5 expression and function have not been investigated in chronic myeloid leukemia (CML). We report that IRF5 is expressed in CML cells, where it interacts with the BCR-A...
متن کاملTrichothecin Induces Cell Death in NF-κB Constitutively Activated Human Cancer Cells via Inhibition of IKKβ Phosphorylation
Constitutive activation of the transcription factor nuclear factor-κB (NF-κB) is involved in tumorigenesis and chemo-resistance. As the key regulator of NF-κB, IKKβ is a major therapeutic target for various cancers. Trichothecin (TCN) is a metabolite isolated from an endophytic fungus of the herbal plant Maytenus hookeri Loes. In this study, we evaluated the anti-tumor activity of TCN and found...
متن کاملIKKβ is an IRF5 kinase that instigates inflammation.
The transcription factor interferon regulatory factor 5 (IRF5) is essential for the induction of inflammatory cytokines, but the mechanism by which IRF5 is activated is not well understood. Here we present evidence that the kinase IKKβ phosphorylates and activates IRF5 in response to stimulation in several inflammatory pathways, including those emanated from Toll-like receptors and retinoic aci...
متن کاملMapping the IκB Kinase β (IKKβ)-binding Interface of the B14 Protein, a Vaccinia Virus Inhibitor of IKKβ-mediated Activation of Nuclear Factor κB*
The IκB kinase (IKK) complex regulates activation of NF-κB, a critical transcription factor in mediating inflammatory and immune responses. Not surprisingly, therefore, many viruses seek to inhibit NF-κB activation. The vaccinia virus B14 protein contributes to virus virulence by binding to the IKKβ subunit of the IKK complex and preventing NF-κB activation in response to pro-inflammatory stimu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 49 شماره
صفحات -
تاریخ انتشار 2014