Computing Néron-tate Heights of Points on Hyperelliptic Jacobians
نویسنده
چکیده
It was shown by Faltings ([Fal84]) and Hriljac ([Hri85]) that the Néron-Tate height of a point on the Jacobian of a curve can be expressed as the self-intersection of a corresponding divisor on a regular model of the curve. We make this explicit and use it to give an algorithm for computing Néron-Tate heights on Jacobians of hyperelliptic curves. To demonstrate the practicality of our algorithm, we illustrate it by computing Néron-Tate heights on Jacobians of hyperelliptic curves of genus 1 ≤ g ≤ 9.
منابع مشابه
An Arakelov-theoretic approach to näıve heights on hyperelliptic Jacobians
We use Arakelov theory to define a height on divisors of degree zero on a hyperelliptic curve over a global field, and show that this height has computably bounded difference from the Néron–Tate height of the corresponding point on the Jacobian. We give an algorithm to compute the set of points of bounded height with respect to this new height. This provides an ‘in principle’ solution to the pr...
متن کاملExhibiting Sha[2] on Hyperelliptic Jacobians
We discuss approaches to computing in the Shafarevich-Tate group of Jacobians of higher genus curves, with an emphasis on the theory and practice of visualisation. Especially for hyperelliptic curves, this often enables the computation of ranks of Jacobians, even when the 2-Selmer bound does not bound the rank sharply. This was previously only possible for a few special cases. For curves of gen...
متن کاملExplicit p-adic methods for elliptic and hyperelliptic curves
We give an overview of some p-adic algorithms for computing with elliptic and hyperelliptic curves, starting with Kedlaya’s algorithm. While the original purpose of Kedlaya’s algorithm was to compute the zeta function of a hyperelliptic curve over a finite field, it has since been used in a number of applications. In particular, we describe how to use Kedlaya’s algorithm to compute Coleman inte...
متن کاملTate pairing computation on the divisors of hyperelliptic curves for cryptosystems
In recent papers [4], [9] they worked on hyperelliptic curves Hb defined by y +y = x+x+b over a finite field F2n with b = 0 or 1 for a secure and efficient pairing-based cryptosystems. We find a completely general method for computing the Tate-pairings over divisor class groups of the curves Hb in a very explicit way. In fact, Tate-pairing is defined over the entire divisor class group of a cur...
متن کاملThe average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point
We prove that when all hyperelliptic curves of genus n ≥ 1 having a rational Weierstrass point are ordered by height, the average size of the 2-Selmer group of their Jacobians is equal to 3. It follows that (the limsup of) the average rank of the Mordell-Weil group of their Jacobians is at most 3/2. The method of Chabauty can then be used to obtain an effective bound on the number of rational p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017