A new elasticity element made for enforcing weak stress symmetry
نویسندگان
چکیده
We introduce a new mixed method for linear elasticity. The novelty is a simplicial element for the approximate stress. For every positive integer k, the row-wise divergence of the element space spans the set of polynomials of total degree k. The degrees of freedom are suited to achieve continuity of the normal stresses. What makes the element distinctive is that its dimension is the smallest required for enforcing a weak symmetry condition on the approximate stress. This is achieved using certain “bubble matrices”, which are special divergence-free matrix-valued polynomials. We prove that the approximation error is of order k + 1 in both the displacement and the stress, and that a postprocessed displacement approximation converging at order k + 2 can be computed element by element. We also show that the globally coupled degrees of freedom can be reduced by hybridization to those of a displacement approximation on the element boundaries.
منابع مشابه
Mixed Methods for Elastodynamics with Weak Symmetry
We analyze the application to elastodynamic problems of mixed finite element methods for elasticity with weakly imposed symmetry of stress. Our approach leads to a semidiscrete method which consists of a system of ordinary differential equations without algebraic constraints. Our error analysis, which is based on a new elliptic projection operator, applies to several mixed finite element spaces...
متن کاملA Unified Analysis of Several Mixed Methods for Elasticity with Weak Stress Symmetry
We give a unified error analysis of several mixed methods for linear elasticity which impose stress symmetry weakly. We consider methods where the rotations are approximated by discontinuous polynomials. The methods we consider are such that the approximate stress spaces contain standard mixed finite element spaces for the Laplace equation and also contain divergence free spaces that use bubble...
متن کاملA Second Elasticity Element Using the Matrix Bubble
We presented a family of finite elements that use a polynomial space augmented by certain matrix bubbles in [Math. Comp., 79 (2010), 1331–1349]. In this sequel, we exhibit a second family of elements that use the same matrix bubble. This second element uses a stress space smaller than the first, while maintaining the same space for rotations (which are the Lagrange multipliers corresponding to ...
متن کاملMixed Finite Element Methods for Linear Viscoelasticity Using Weak Symmetry
Small deformations of a viscoelastic body are considered through the linear Maxwell and Kelvin-Voigt models in the quasi-static equilibrium. A robust mixed finite element method, enforcing the symmetry of the stress tensor weakly, is proposed for these equations on simplicial tessellations in two and three dimensions. A priori error estimates are derived and numerical experiments presented. The...
متن کاملModelling of and Mixed Finite Element Methods for Gels in Biomedical Applications
A set of equilibrium equations for a biphasic polymer gel are considered with the end purpose of studying stress and deformation in confinement problems encountered in connection with biomedical implants. The existence of minimizers for the gel energy is established first. Further, the small-strain equations are derived and related to the linear elasticity equations with parameters dependent on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 79 شماره
صفحات -
تاریخ انتشار 2010