Convergence of a family of neural network operators of the Kantorovich type

نویسندگان

  • Danilo Costarelli
  • Renato Spigler
چکیده

A family of neural network operators of the Kantorovich type is introduced and their convergence studied. Such operators are multivariate, and based on certain special density functions, constructed through sigmoidal functions. Pointwise as well as uniform approximation theorems are established when such operators are applied to continuous functions. Moreover, also L p approximations are considered, with 1 ≤ p < +∞, since the L p setting is the most natural for the neural network operators of the Kantorovich type. Constructive multivariate approximation algorithms, based on neural networks, are important since typical applications to neurocomputing processes do exist for high-dimensional data, then the relation with usual neural networks approximations is discussed. Several examples of sigmoidal functions, for which the present theory can be applied are presented. c ⃝ 2014 Elsevier Inc. All rights reserved. MSC: 41A25; 41A30; 47A58

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence theorem for finite family of m-accretive operators in Banach spaces

The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.

متن کامل

SOME APPROXIMATION RESULTS FOR BERNSTEIN-KANTOROVICH OPERATORS BASED ON (p, q)-CALCULUS

In this paper, a new analogue of Bernstein-Kantorovich operators as (p, q)-Bernstein-Kantorovich operators are introduced. We discuss approximation properties for these operators based on Korovkin’s type approximation theorem and we compute the order of convergence using usual modulus of continuity and also the rate of convergence when the function f belongs to the class LipM (α). Moreover, the...

متن کامل

On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators

In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...

متن کامل

Multivariate fuzzy perturbed neural network operators approximation

This article studies the determination of the rate of convergence to the unit of each of three newly introduced here multivariate fuzzy perturbed normalized neural network operators of one hidden layer. These are given through the multivariate fuzzy modulus of continuity of the involved multivariate fuzzy number valued function or its high order fuzzy partial derivatives and that appears in the...

متن کامل

q−BERNSTEIN-SCHURER-KANTOROVICH TYPE OPERATORS

The aim of this paper is to present a Stancu type Kantorovich modification of q−BernsteinSchurer operators introduced by Muraru [22] and modified by Ren and Zeng [29]. Here, we obtain a convergence theorem by using the well known Bohman-Korovkin criterion and find the estimate of the rate of convergence by means of modulus of continuity and Lipschitz function for these operators. Also, we estab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 185  شماره 

صفحات  -

تاریخ انتشار 2014