Inducible translational regulation of the NF-IL6 transcription factor by respiratory syncytial virus infection in pulmonary epithelial cells.
نویسندگان
چکیده
Respiratory syncytial virus (RSV), the most common etiologic agent of epidemic pediatric respiratory disease, infects and replicates in the human airway epithelium, resulting in the induction of cellular gene products essential for immune and inflammatory responses. We describe the effect of RSV infection on nuclear factor-IL6 (NF-IL6) expression, a human basic domain-leucine zipper-containing transcription factor that alone in combination with other inducible transcription factors regulates the expression of cytokine and adhesion molecule genes. RSV-infected human type II pulmonary alveolar epithelial cells (A549) synthesize a single 45.7-kDa isoform of NF-IL6 rapidly and in a time-dependent manner. NF-IL6 is first detectable after 3 h of infection and continues to accumulate until 48 h (until the cells lose viability). NF-IL6 production could not be induced by UV-inactivated virus, demonstrating the requirement of viral replication for NF-IL6 synthesis. Immunoprecipitation after [35S]methionine metabolic labeling was done to investigate the mechanism for NF-IL6 production. There was robust NF-IL6 protein synthesis within RSV-infected (24 h) cells. Protein synthesis occurred without detectable changes in the abundance or size of the single 1.8-kb NF-IL6 mRNA. RNase protection assay of transfected chloramphenicol acetyltransferase reporter genes driven by either wild-type or mutated NF-IL6 binding sites show a virus-induced increase in NF-IL6-dependent transcription. These studies have demonstrated a novel inducible mechanism for translational control of NF-IL6 synthesis and identify this transcription factor as a potential effector of the host response to RSV infection.
منابع مشابه
Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells.
Respiratory syncytial virus (RSV) is one of the most common viral pathogens causing severe lower respiratory tract infections in infants and young children. Infected host cells detect and respond to RNA viruses using different mechanisms in a cell-type-specific manner, including retinoic acid-inducible gene I (RIG-I)-dependent and Toll-like receptor (TLR)-dependent pathways. Because the relativ...
متن کاملMultiple cis regulatory elements control RANTES promoter activity in alveolar epithelial cells infected with respiratory syncytial virus.
Respiratory syncytial virus (RSV) produces intense pulmonary inflammation, in part through its ability to induce chemokine synthesis in infected airway epithelial cells. RANTES (regulated upon activation, normally T-cell expressed and presumably secreted) is a CC chemokine which recruits and activates monocytes, lymphocytes, and eosinophils, all cell types present in the lung inflammatory infil...
متن کاملEssential roles of NF-kappaB and C/EBP in the regulation of intercellular adhesion molecule-1 after respiratory syncytial virus infection of human respiratory epithelial cell cultures.
To determine the molecular mechanism(s) of respiratory syncytial virus (RSV)-induced intercellular adhesion molecule-1 (ICAM-1) upregulation in respiratory epithelial cells (REC; A549 cell cultures), we investigated the roles of the transcription factors NF-kappaB and C/EBP. Increases in ICAM-1 message required de novo mRNA synthesis. ICAM-1 promoter constructs (luciferase reporter gene) transf...
متن کاملRSV infection modulates IL-15 production and MICA levels in respiratory epithelial cells.
The cytokine interleukin (IL)-15, major histocompatibility complex (MHC) class I molecules and MHC class I chain-related proteins (MIC) A and B are involved in cellular immune responses to virus infections but their role in respiratory syncytial virus (RSV) infection has not been studied. We aimed to determine how RSV infection modulates IL-15 production, MHC class I and MICA expression in resp...
متن کاملOxygen-regulated transcription factors and their role in pulmonary disease
The transcription factors nuclear factor interleukin-6 (NF-IL6), early growth response-1 (EGR-1) and hypoxia-inducible factor-1 (HIF-1) have important roles in the molecular pathophysiology of hypoxia-associated pulmonary disease. NF-IL6 controls the production of interleukin (IL)-6 in vascular endothelial cells, which may have anti-inflammatory activity by counteracting effects of IL-1 and IL-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 70 3 شماره
صفحات -
تاریخ انتشار 1996