Ensemble of GA based Selective Neural Network Ensembles

نویسندگان

  • Jian-Xin WU
  • Zhi-Hua ZHOU
  • Zhao-Qian CHEN
چکیده

Neural network ensemble is a learning paradigm where several neural networks are jointly used to solve a problem. In this paper, e-GASEN, a twolayer neural network ensemble architecture is proposed, in which the base learners of the final ensemble are also ensembles. Experimental results show that e-GASEN generalizes better than a popular ensemble method. The reason why e-GASEN works is also discussed. We believe that the different layers of e-GASEN attain good generalization ability for different reasons. The first layer ensembles profit from the selected individual neural networks that are moderately divergent but generalize well, while the second layer ensemble profits from the divergency among the first layer ensembles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble strategies to build neural network to facilitate decision making

There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...

متن کامل

Combining Regression Estimators: GA-Based Selective Neural Network Ensemble

Neural network ensemble is a learning paradigm where a collection of neural networks is trained for the same task. In this paper, the relationship between the generalization ability of the neural network ensemble and the correlation of the individual neural networks constituting the ensemble is analyzed in the context of combining neural regression estimators, which reveals that ensembling a se...

متن کامل

Selective Neural Network Ensembles in Reinforcement Learning

Ensemble models can achieve more accurate predictions than single learners. Selective ensembles further improve the predictions by selecting an informative subset of the full ensemble. We consider reinforcement learning ensembles, where the members are neural networks. In this context we study a new algorithm for ensemble subset selection in reinforcement learning scenarios. The aim of the prop...

متن کامل

Stock Index Forecasting Using PSO Based Selective Neural Network Ensemble

Stock market analysis is one of the most important and hard problems in finance analysis field. Recently, the usage of intelligent systems for stock market prediction has been widely established. In this paper, a PSO based selective neural network ensemble (PSOSEN) algorithm is proposed, which is used for the Nasdaq-100 index of Nasdaq Stock Market and the S&P CNX NIFTY stock index analysis. In...

متن کامل

Selective Ensemble of Decision Trees

An ensemble is generated by training multiple component learners for a same task and then combining their predictions. In most ensemble algorithms, all the trained component learners are employed in constituting an ensemble. But recently, it has been shown that when the learners are neural networks, it may be better to ensemble some instead of all of the learners. In this paper, this claim is g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001