Further Investigations Involving Rook Polynomials With Only Real Zeros

نویسنده

  • James Haglund
چکیده

We study the zeros of two families of polynomials related to rook theory and matchings in graphs. One of these families is based on the cover polynomial of a digraph introduced by Chung and Graham [ChGr]. Another involves a version of the \hit polynomial" of rook theory, but which applies to weighted matchings in (non-bipartite) graphs. For both of these families we prove a result which is analogous to a theorem of of the author, K. Ono, and D. G. Wagner, namely that for Ferrers boards the hit polynomial has only real zeros. We also show that for each of these families there is a general conjecture involving arrays of numbers satisfying inequalities which contains these theorems as special cases. We provide evidence for the truth of these conjectures by proving other special cases and discussing computational experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Investigations Involving Rook Polynomials with Only Real Roots

We present a number of conjectures involving rook polynomials having only real zeros. Many of these generalize a previous conjecture of the author, K. Ono, and D. G. Wagner, namely that if A is a real n n matrix which is weakly increasing down columns, then the permanent of zA + Jn has only real zeros. In some cases these conjectures are motivated by factorization theorems for Ferrers boards. S...

متن کامل

Theorems and Conjectures Involving Rook Polynomials with Only Real Zeros

Let A = (aij) be a real n n matrix with non-negative entries which are weakly increasing down columns. If B = (bij) is the n n matrix where bij := aij+z; then we conjecture that all of the roots of the permanent of B, as a polynomial in z; are real. Here we establish several special cases of the conjecture.

متن کامل

Matching Polynomials And Duality

Let G be a simple graph on n vertices. An r-matching in G is a set of r independent edges. The number of r-matchings in G will be denoted by p(G,r). We set p(G,0)=1 and define the matching polynomial of G by μ(G,x):= ∑bn/2c r=0 (−1)·p(G,r)·x and the signless matching polynomial of G by μ(G,x):= ∑bn/2c r=0 p(G,r)·x. It is classical that the matching polynomials of a graph G determine the matchin...

متن کامل

On the Zeros of Various Kinds of Orthogonal Polynomials

Recently, several generalizations of the notion of orthogonal polynomials appeared in the literature. The aim of this paper is to study their zeros. Let P k be the unique polynomial of exact degree k such that Z b a x i P k (x) dd(x) = 0; for i = 0; : : : ; k ? 1 where is a positive Borel measure on a; b]. P k is the polynomial of degree k belonging to the family of orthogonal polynomials on a;...

متن کامل

Domain of attraction of normal law and zeros of random polynomials

Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2000