Electrical Properties Assessed by Bioelectrical Impedance Spectroscopy as Biomarkers of Age-related Loss of Skeletal Muscle Quantity and Quality.

نویسندگان

  • Yosuke Yamada
  • Bjoern Buehring
  • Diane Krueger
  • Rozalyn M Anderson
  • Dale A Schoeller
  • Neil Binkley
چکیده

Skeletal muscle, in addition to being comprised of a heterogeneous muscle fiber population, also includes extracellular components that do not contribute to positive tensional force production. Here we test segmental bioelectrical impedance spectroscopy (S-BIS) to assess muscle intracellular mass and composition. S-BIS can evaluate electrical properties that may be related to muscle force production. Muscle fiber membranes separate the intracellular components from the extracellular environment and consist of lipid bilayers which act as an electrical capacitor. We found that S-BIS measures accounted for ~85% of the age-related decrease in appendicular muscle power compared with only ~49% for dual-energy x-ray absorptiometry (DXA) measures. Indices of extracellular (noncontractile) and cellular (contractile) compartments in skeletal muscle tissues were determined using the Cole-Cole plot from S-BIS measures. Characteristic frequency, membrane capacitance, and phase angle determined by Cole-Cole analysis together presented a S-BIS complex model that explained ~79% of interindividual variance of leg muscle power. This finding underscores the value of S-BIS to measure muscle composition rather than lean mass as measured by DXA and suggests that S-BIS should be highly informative in skeletal muscle physiology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Muscle Mass, Total Body Water and Total Body Protein in Type II Diabetics with Healthy Matched Adults by Bioelectrical Impedance Analysis

Background: Bioelectrical impedance analysis (BIA) is a new and rapid technique to validate body composition. Several studies have used this technique to evaluate body compositions, such as muscle mass, in diabetic patients, but the results are very different. This may due the differences between diabetic patients and control group. Therefore, this study aimed to compare the muscle mass of diab...

متن کامل

Validity of using multi-frequency bioelectrical impedance analysis to measure skeletal muscle mass in preschool children

[Purposes] Although it is recommended to develop a habit of physical activities, there is no easy way to measure skeletal muscle mass in preschool children, which cause the difficulty of evaluation. The purpose of this study was to examine the validity of body composition including the skeletal muscle mass assessment using multi-frequency bioelectrical impedance analysis by comparing body fat m...

متن کامل

Comparison of single- or multifrequency bioelectrical impedance analysis and spectroscopy for assessment of appendicular skeletal muscle in the elderly.

Bioelectrical impedance analysis (BIA) is used to assess skeletal muscle mass, although its application in the elderly has not been fully established. Several BIA modalities are available: single-frequency BIA (SFBIA), multifrequency BIA (MFBIA), and bioelectrical impedance spectroscopy (BIS). The aim of this study was to examine the difference between SFBIA, MFBIA, and BIS for assessment of ap...

متن کامل

Electrical Structure of Biological Cells and Tissues: impedance spectroscopy, stereology, and singular perturbation theory

Impedance Spectroscopy resolves electrical properties into uncorrelated variables, as a function of frequency, with exquisite resolution. Separation is robust and most useful when the system is linear. Impedance spectroscopy combined with appropriate structural knowledge provides insight into pathways for current flow, with more success than other methods. Biological applications of impedance s...

متن کامل

Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review.

Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journals of gerontology. Series A, Biological sciences and medical sciences

دوره 72 9  شماره 

صفحات  -

تاریخ انتشار 2017