Ensemble of SVMs for Incremental Learning
نویسندگان
چکیده
Support Vector Machines (SVMs) have been successfully applied to solve a large number of classification and regression problems. However, SVMs suffer from the catastrophic forgetting phenomenon, which results in loss of previously learned information. Learn have recently been introduced as an incremental learning algorithm. The strength of Learn lies in its ability to learn new data without forgetting previously acquired knowledge and without requiring access to any of the previously seen data, even when the new data introduce new classes. To address the catastrophic forgetting problem and to add the incremental learning capability to SVMs, we propose using an ensemble of SVMs trained with Learn. Simulation results on real-world and benchmark datasets suggest that the proposed approach is promising.
منابع مشابه
A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملReducing the Effect of Out-Voting Problem in Ensemble Based Incremental Support Vector Machines
Although Support Vector Machines (SVMs) have been successfully applied to solve a large number of classification and regression problems, they suffer from the catastrophic forgetting phenomenon. In our previous work, integrating the SVM classifiers into an ensemble framework using Learn++ (SVMLearn++) [1], we have shown that the SVM classifiers can in fact be equipped with the incremental learn...
متن کاملMulti-Task Multi-Sample Learning
In the exemplar SVM (E-SVM) approach of Malisiewicz et al., ICCV 2011, an ensemble of SVMs is learnt, with each SVM trained independently using only a single positive sample and all negative samples for the class. In this paper we develop a multi-sample learning (MSL) model which enables joint regularization of the E-SVMs without any additional cost over the original ensemble learning. The adva...
متن کاملIncremental Support Vector Machine Construction
SVMs suffer from the problem of large memory requirement and CPU time when trained in batch mode on large data sets. We overcome these limitations, and at the same time make SVMs suitable for learning with data streams, by constructing incremental learning algorithms. We first introduce and compare different incremental learning techniques, and show that they are capable of producing performanc...
متن کاملEnsemble Methods of Appropriate Capacity for Multi-Class Support Vector Machines
Roughly speaking, there is one single model of pattern recognition support vector machine (SVM), with variants of lower popularity. On the contrary, among the different multi-class SVMs (M-SVMs) published, none is clearly favoured. Although several comparative studies between M-SVMs and decomposition methods have been reported, no attention had been paid so far to the combination of those model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005