A Spectral Graph Approach to Discovering Genetic Ancestry1 by Ann

نویسندگان

  • B. LEE
  • DIANA LUCA
  • KATHRYN ROEDER
چکیده

Mapping human genetic variation is fundamentally interesting in fields such as anthropology and forensic inference. At the same time, patterns of genetic diversity confound efforts to determine the genetic basis of complex disease. Due to technological advances, it is now possible to measure hundreds of thousands of genetic variants per individual across the genome. Principal component analysis (PCA) is routinely used to summarize the genetic similarity between subjects. The eigenvectors are interpreted as dimensions of ancestry. We build on this idea using a spectral graph approach. In the process we draw on connections between multidimensional scaling and spectral kernel methods. Our approach, based on a spectral embedding derived from the normalized Laplacian of a graph, can produce more meaningful delineation of ancestry than by using PCA. The method is stable to outliers and can more easily incorporate different similarity measures of genetic data than PCA. We illustrate a new algorithm for genetic clustering and association analysis on a large, genetically heterogeneous sample.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spectral Graph Approach to Discovering Genetic Ancestry.

Mapping human genetic variation is fundamentally interesting in fields such as anthropology and forensic inference. At the same time, patterns of genetic diversity confound efforts to determine the genetic basis of complex disease. Due to technological advances, it is now possible to measure hundreds of thousands of genetic variants per individual across the genome. Principal component analysis...

متن کامل

Discovering genetic ancestry using spectral graph theory.

As one approach to uncovering the genetic underpinnings of complex disease, individuals are measured at a large number of genetic variants (usually SNPs) across the genome and these SNP genotypes are assessed for association with disease status. We propose a new statistical method called Spectral-GEM for the analysis of genome-wide association studies; the goal of Spectral-GEM is to quantify th...

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA

The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010