Brain Mr Image Classification Using Multi- Scale Geometric Analysis of Ripplet
نویسندگان
چکیده
We propose an automatic and accurate technique for classifying normal and abnormal magnetic resonance (MR) images of human brain. Ripplet transform Type-I (RT), an efficient multiscale geometric analysis (MGA) tool for digital images, is used to represent the salient features of the brain MR images. The dimensionality of the image representative feature vector is reduced by principal component analysis (PCA). A computationally less expensive support vector machine (SVM), called least square-SVM (LS-SVM) is used to classify the brain MR images. Extensive experiments were carried out to evaluate the performance of the proposed system. Two benchmark MR image datasets and a new larger dataset were used in the experiments, consisting 66, 160 and 255 images, respectively. The generalization capability of the proposed technique is enhanced by 5 × 5 cross validation procedure. For all the datasets used in the experiments, the proposed system shows high classification accuracies (on an average > 99%). Experimental results and performance comparisons with state-of-the-art techniques, show that the proposed scheme is efficient in brain MR image classification.
منابع مشابه
Robust Classification of MR Brain Images Based on Multiscale Geometric Analysis
The widely used feature representation scheme for magnetic resonance (MR) image classification based on low-frequency subband (LFS) coefficients of wavelet transform (WT) is ineffective in presence of common MR imaging (MRI) artifacts (small rotation, low dynamic range etc.). The directional information present in the high-frequency subbands (HFSs) can be used to improve the performance. Moreov...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملOptimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions
Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Meth...
متن کاملA Ripplet Transform Based Statistical Framework for Natural Color Image Retrieval
We present a novel Content Based Image Retrieval (CBIR) scheme for natural color images using Multi-scale Geometric Analysis (MGA) of Ripplet Transform (RT) Type-I in the statistical framework based on Generalized Gaussian Density (GGD) model and KullbackLeibler Distance (KLD). The system is based on modeling the marginal distributions of RT coefficients by GGD framework and computing the simil...
متن کاملA Ripplet Transform based Statistical 1 Framework for Natural Color Image Retrieval
We present a novel Content Based Image Retrieval (CBIR) 6 scheme for natural color images using Multi-scale Geometric Analysis 7 (MGA) of Ripplet Transform (RT) Type-I in the statistical framework 8 based on Generalized Gaussian Density (GGD) model and Kullback9 Leibler Distance (KLD). The system is based on modeling the marginal 10 distributions of RT coefficients by GGD framework and computin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013