Optimal Shrinkage Estimation of Variances With Applications to Microarray Data Analysis
نویسندگان
چکیده
Microarray technology allows a scientist to study genomewide patterns of gene expression. Thousands of individual genes are measured with a relatively small number of replications, which poses challenges to traditional statistical methods. In particular, the gene-specific estimators of variances are not reliable and gene-by-gene tests have low powers. In this article we propose a family of shrinkage estimators for variances raised to a fixed power. We derive optimal shrinkage parameters under both Stein and squared loss functions. Our results show that the standard sample variance is inadmissible under either loss function. We propose several estimators for the optimal shrinkage parameters and investigate their asymptotic properties under two scenarios: large number of replications and large number of genes. We conduct simulations to evaluate the finite sample performance of the data-driven optimal shrinkage estimators and compare them with some existing methods. We construct F-like statistics using these shrinkage variance estimators and apply them to detect differentially expressed genes in a microarray experiment. We also conduct simulations to evaluate performance of these F-like statistics and compare them with some existing methods.
منابع مشابه
Shrinkage Preliminary Test Estimation under a Precautionary Loss Function with Applications on Records and Censored Ddata
Shrinkage preliminary test estimation in exponential distribution under a precautionary loss function is considered. The minimum risk-unbiased estimator is derived and some shrinkage preliminary test estimators are proposed. We apply our results on censored data and records. The relative efficiencies of proposed estimators with respect to the minimum ‎risk-unbiased‎&...
متن کاملOptimal tests shrinking both means and variances applicable to microarray data analysis.
As a consequence of the "large p small n" characteristic for microarray data, hypothesis tests based on individual genes often result in low average power. There are several proposed tests that attempt to improve power. Among these, the FS test that was developed using the concept of James-Stein shrinkage to estimate the variances showed a striking average power improvement. In this paper, we e...
متن کاملBorrowing information across genes and experiments for improved error variance estimation in microarray data analysis.
Statistical inference for microarray experiments usually involves the estimation of error variance for each gene. Because the sample size available for each gene is often low, the usual unbiased estimator of the error variance can be unreliable. Shrinkage methods, including empirical Bayes approaches that borrow information across genes to produce more stable estimates, have been developed in r...
متن کاملPositive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications
Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...
متن کاملA Nonparametric Mean-Variance Smoothing Method to Assess Arabidopsis Cold Stress Transcriptional Regulator CBF2 Overexpression Microarray Data
Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006