Charge state of C10 and C5 energetic cluster ions in amorphous carbon targets: simulations
نویسنده
چکیده
We present here detailed simulations of the interaction of energetic C10 and C5 clusters at the energies of 1, 2, and 4 MeV per carbon atom with an amorphous carbon target. The spatial evolution of the cluster components is simulated accounting for both scattering and Coulomb explosion. The former is calculated by means of the Monte Carlo method while the latter is computed by means of molecular dynamics. The charge state of the individual cluster components is calculated as a function of penetration depth, and is determined by the competition between electron ionization and recombination. The results of calculations of the effect of the neighbouring cluster components on the suppression of the values of the charge state are presented and compared to the experimental values of Brunelle et al. Charge state suppression calculations for the 2 MeV/C clusters for both C10 and C5 agree well with the experimental results for penetration depths of less than about 500 and 250 Å respectively, assuming the intracluster Coulomb potential is screened by four target valence electrons. At 4 MeV/C the results are similar although less screening is required; a possible explanation is the inability of the plasma to completely screen the higher velocity projectiles. The 1 MeV/C calculated results however differ in their behaviour from the 2 and 4 MeV/C cases. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Simulation of the interaction of high-energy C60 cluster ions with amorphous targets
Detailed simulations of the interaction of energetic C60 beams with amorphous targets are presented here. The spatial evolution of the cluster components is calculated accounting for multiple scattering and Coulomb explosion by means of Monte Carlo and molecular dynamics, respectively. The charge states of the individual cluster components ~atoms, atomic ions, fragment cluster ions! as a functi...
متن کاملDynamic screening and charge state of fast ions in plasma and solids
This paper addresses the effect of target plasma electrons on the charge state of energetic ions, penetrating a target composed of bound as well as plasma electrons. Dynamic screening of the projectile Coulomb potential by the plasma electrons brings about a depression in the ionization energy of the ionic projectiles, as has been verified experimentally. This in turn makes the ionization cross...
متن کاملSimulation of MeVÕatom cluster correlations in matter
We present an efficient algorithm able to predict the trajectories of individual cluster constituents as they penetrate relatively thick amorphous targets. Our algorithm properly treats both the intracluster Coulomb repulsion and the collisions between cluster constituents and target atoms. We have compared our simulation predictions to experimental measurements of the distribution of lateral e...
متن کاملMolecular Dynamics for Low Temperature Plasma-Surface Interaction Studies
The mechanisms of physical and chemical interactions of low temperature plasmas with surfaces can be fruitfully explored using molecular dynamics (MD) simulations. MD simulations follow the detailed motion of sets of interacting atoms through integration of atomic equations of motion, using inter-atomic potentials that can account for bond breaking and formation that result when energetic speci...
متن کاملEnergetic electron and ion generation from interactions of intense laser pulses with laser machined conical targets
The generation of energetic electron and proton beams was studied from the interaction of high intensity laser pulses with pre-drilled conical targets. These conical targets are laser machined onto flat targets using 7–180μJ pulses whose axis of propagation is identical to that of the main high intensity pulse. This method significantly relaxes requirements for alignment of conical targets in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006