Trace-positive polynomials, sums of hermitian squares and the tracial moment problem

نویسنده

  • Sabine Burgdorf
چکیده

A polynomial f in non-commuting variables is trace-positive if the trace of f(A) is positive for all tuples A of symmetric matrices of the same size. The investigation of trace-positive polynomials and of the question of when they can be written as a sum of hermitian squares and commutators of polynomials are motivated by their connection to two famous conjectures: The BMV conjecture from statistical quantum mechanics and the embedding conjecture of Alain Connes concerning von Neumann algebras. First, results on the question of when a trace-positive polynomial in two non-commuting variables can be written as a sum of hermitian squares and commutators are presented. For instance, any bivariate trace-positive polynomial of degree at most four has such a representation, whereas this is false in general if the degree is at least six. This is in perfect analogy to Hilbert’s results from the commutative context. Further, a partial answer to the Lieb-Seiringer formulation of the BMV conjecture is given by presenting some concrete representations of the polynomials Sm,4(X, Y 2) as a sum of hermitian squares and commutators. The second part of this work deals with the tracial moment problem. That is, how can one describe sequences of real numbers that are given by tracial moments of a probability measure on symmetric matrices of a fixed size. The truncated tracial moment problem, where one considers only finite sequences, as well as the tracial analog of theK-moment problem are also investigated. Several results from the classical moment problem in Functional Analysis can be transferred to this context. For instance, a tracial analog of Haviland’s theorem holds: A tracial linear functional L is given by the tracial moments of a positive Borel measure on symmetric matrices of a fixed size s if and only if L takes only positive values on all polynomials which are trace-positive on all tuples of symmetric s× s-matrices. This result uses tracial versions of the results of Fialkow and Nie on positive extensions of truncated sequences. Further, tracial analogs of results of Stochel and of Bayer and Teichmann are given. Defining a tracial Hankel matrix in analogy to the Hankel matrix in the classical moment problem, the results of Curto and Fialkow concerning sequences with Hankel matrices of finite rank or Hankel matrices of finite size which admit a flat extension also hold true in the tracial context. Finally, a relaxation for trace-minimization of polynomials using sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, the tracial analogs of the results of Curto and Fialkow give a sufficient condition for the exactness of this relaxation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trace-positive polynomials and the quartic tracial moment problem Polynômes avec une trace positive et le problème quartique des moments traciaux

The tracial analog of Hilbert’s classical result on positive binary quartics is presented: a trace-positive bivariate noncommutative polynomial of degree at most four is a sum of hermitian squares and commutators. This is applied via duality to investigate the truncated tracial moment problem: a sequence of real numbers indexed by words of degree four in two noncommuting variables with values i...

متن کامل

The tracial moment problem and trace-optimization of polynomials

The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f , what is the smallest trace f(A) can attain for a tuple of matrices A? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives effectively computable bou...

متن کامل

The Truncated Tracial Moment Problem

We present tracial analogs of the classical results of Curto and Fialkow on moment matrices. A sequence of real numbers indexed by words in non-commuting variables with values invariant under cyclic permutations of the indexes, is called a tracial sequence. We prove that such a sequence can be represented with tracial moments of matrices if its corresponding moment matrix is positive semidefini...

متن کامل

Real Algebra, Geometry and Convexity

Gennadiy Averkov (Magdeburg): Lattice-free sets: finiteness and classification results Lattice-free sets are the ‘building blocks’ for cutting-plane type methods in the mixed integer optimization. Recent results in the cutting-plane theory indicate that a complete classification of maximal lattice-free sets is desirable. The talk is mainly devoted to the inclusion-maximal lattice-free sets sati...

متن کامل

Sums of Hermitian Squares and the Bmv Conjecture

We show that all the coefficients of the polynomial tr((A+ tB)) ∈ R[t] are nonnegative whenever m ≤ 13 is a nonnegative integer and A and B are positive semidefinite matrices of the same size. This has previously been known only for m ≤ 7. The validity of the statement for arbitrary m has recently been shown to be equivalent to the Bessis-Moussa-Villani conjecture from theoretical physics. In o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011