Persistence of eupnea and gasping following blockade of both serotonin type 1 and 2 receptors in the in situ juvenile rat preparation.
نویسندگان
چکیده
In severe hypoxia or ischemia, normal eupneic breathing is replaced by gasping, which can serve as a powerful mechanism for "autoresuscitation." We have proposed that gasping is generated by medullary neurons having intrinsic pacemaker bursting properties dependent on a persistent sodium current. A number of neuromodulators, including serotonin, influence persistent sodium currents. Thus we hypothesized that endogenous serotonin is essential for gasping to be generated. To assess such a critical role for serotonin, a preparation of the perfused, juvenile in situ rat was used. Activities of the phrenic, hypoglossal, and vagal nerves were recorded. We added blockers of type 1 and/or type 2 classes of serotonergic receptors to the perfusate delivered to the preparation. Eupnea continued following additions of any of the blockers. Changes were limited to an increase in the frequency of phrenic bursts and a decline in peak heights of all neural activities. In ischemia, gasping was induced following any of the blockers. Few statistically significant changes in parameters of gasping were found. We thus did not find a differential suppression of gasping, compared with eupnea, following blockers of serotonin receptors. Such a differential suppression had been proposed based on findings using an in vitro preparation. We hypothesize that multiple neurotransmitters/neuromodulators influence medullary mechanisms underlying the neurogenesis of gasping. In greatly reduced in vitro preparations, the importance of any individual neuromodulator, such as serotonin, may be exaggerated compared with its role in more intact preparations.
منابع مشابه
Tonic pulmonary stretch receptor feedback modulates both eupnea and gasping in an in situ rat preparation.
The perfused in situ juvenile rat preparation produces phrenic discharge patterns comparable to eupnea and gasping in vivo. These ventilatory patterns of eupnea and gasping differ in multiple aspects, including most prominently the rate of rise of inspiratory activity. Because gasping, but not eupnea, appeared similar after vagotomy in spontaneous breathing preparations, it has been assumed tha...
متن کاملMaintenance of gasping and restoration of eupnea after hypoxia is impaired following blockers of alpha1-adrenergic receptors and serotonin 5-HT2 receptors.
In severe hypoxia or ischemia, normal eupneic breathing fails and is replaced by gasping. Gasping serves as part of a process of autoresuscitation by which eupnea is reestablished. Medullary neurons, having a burster, pacemaker discharge, underlie gasping. Conductance through persistent sodium channels is essential for the burster discharge. This conductance is modulated by norepinephrine, acti...
متن کاملDischarge of the hypoglossal nerve cannot distinguish eupnea from gasping, as defined by phrenic discharge, in the in situ mouse.
If normal, eupneic breathing fails, gasping is recruited. Serotonin was proposed as essential for gasping, based on findings using an in vitro mouse preparation. This preparation generates rhythmic activities of the hypoglossal nerve that are considered to be akin to both eupnea and gasping. In previous studies, gasping of in situ rat and mouse preparations continued unabated following blockers...
متن کاملPhasic pulmonary stretch receptor feedback modulates both eupnea and gasping in an in situ rat preparation.
The perfused in situ juvenile rat preparation produces patterns of phrenic discharge comparable to eupnea and gasping in vivo. These ventilatory patterns differ in multiple aspects, including most prominently the rate of rise of inspiratory activity. Although we have recently demonstrated that both eupnea and gasping are similarly modulated by a Hering-Breuer expiratory-promoting reflex to toni...
متن کاملPotential switch from eupnea to fictive gasping following blockade of glycine transmission and potassium channels
This study evaluated possible neuronal mechanisms responsible for the transition from normal breathing (eupnea) to gasping. We hypothesized that a blockade of both inhibitory glycinergic synaptic transmission and potassium channels, combined with an increase in extracellular concentration of potassium, would induce a switch from an eupneic respiratory pattern to gasping. Efferent activities of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 103 1 شماره
صفحات -
تاریخ انتشار 2007