Adjusted functional boxplots for spatiotemporal data visualization and outlier detection

نویسندگان

  • Ying Sun
  • Marc G. Genton
چکیده

This article proposes a simulation-based method to adjust functional boxplots for correlations when visualizing functional and spatio-temporal data, as well as detecting outliers. We start by investigating the relationship between the spatiotemporal dependence and the 1.5 times the 50% central region empirical outlier detection rule. Then, we propose to simulate observations without outliers on the basis of a robust estimator of the covariance function of the data. We select the constant factor in the functional boxplot to control the probability of correctly detecting no outliers. Finally, we apply the selected factor to the functional boxplot of the original data. As applications, the factor selection procedure and the adjusted functional boxplots are demonstrated on sea surface temperatures, spatio-temporal precipitation and general circulation model (GCM) data. The outlier detection performance is also compared before and after the factor adjustment. Copyright © 2011 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bagplots, boxplots and outlier detection for functional data

We propose some new tools for visualizing functional data and for identifying functional outliers. The proposed tools make use of robust principal component analysis, data depth and highest density regions. We compare the proposed outlier detection methods with the existing “functional depth” method, and show that our methods have better performance on identifying outliers in French male age-sp...

متن کامل

Rainbow plots, bagplots and boxplots for functional data

Abstract We propose new tools for visualizing large amounts of functional data in the form of smooth curves. The proposed tools include functional versions of the bagplot and boxplot, and make use of the first two robust principal component scores, Tukey’s data depth and highest density regions. By-products of our graphical displays are outlier detection methods for functional data. We compare ...

متن کامل

Discussion of "multivariate functional outlier detection" by M. Hubert, P. Rousseeuw and P. Segaert

I would like to congratulate M. Hubert, P. Rousseeuw and P. Segaert for this stimulating and useful work on outlier detection methods for multivariate functional data. They define and classify rigorously different types of functional outliers and propose several techniques for detecting them in multivariate functional data. These authors use the notion of data depth and distances derived from t...

متن کامل

Incremental Principal Component Analysis Based Outlier Detection Methods for Spatiotemporal Data Streams

In this paper, we address outliers in spatiotemporal data streams obtained from sensors placed across geographically distributed locations. Outliers may appear in such sensor data due to various reasons such as instrumental error and environmental change. Realtime detection of these outliers is essential to prevent propagation of errors in subsequent analyses and results. Incremental Principal ...

متن کامل

Total Variation Depth for Functional Data

There has been extensive work on data depth-based methods for robust multivariate data analysis. Recent developments have moved to infinite-dimensional objects such as functional data. In this work, we propose a new notion of depth, the total variation depth, for functional data. As a measure of depth, its properties are studied theoretically, and the associated outlier detection performance is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012