On the dichotomy of Perron numbers and beta-conjugates

نویسنده

  • Jean-Louis Verger-Gaugry
چکیده

Let β > 1 be an algebraic number. A general definition of a beta-conjugate of β is proposed with respect to the analytical function fβ(z) = −1 + ∑ i≥1 tiz i associated with the Rényi β-expansion dβ(1) = 0.t1t2 . . . of unity. From Szegö’s Theorem, we study the dichotomy problem for fβ(z), in particular for β a Perron number: whether it is a rational fraction or admits the unit circle as natural boundary. The first case of dichotomy meets Boyd’s works. We introduce the study of the geometry of the beta-conjugates with respect to that of the Galois conjugates by means of the Erdős-Turán approach and take examples of Pisot, Salem and Perron numbers which are Parry numbers to illustrate it. We discuss the possible existence of an infinite number of beta-conjugates and conjecture that all real algebraic numbers > 1, in particular Perron numbers, are in C1∪C2∪C3 after the classification of Blanchard/Bertrand-Mathis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform distribution of Galois conjugates and beta-conjugates of a Parry number near the unit circle and dichotomy of Perron numbers

Concentration and equi-distribution, near the unit circle, in Solomyak’s set, of the union of the Galois conjugates and the beta-conjugates of a Parry number β are characterized by means of the Erdős-Turán approach, and its improvements by Mignotte and Amoroso, applied to the analytical function fβ(z) = −1 + ∑ i≥1 tiz i associated with the Rényi β-expansion dβ(1) = 0.t1t2 . . . of unity. Mignot...

متن کامل

Algebraic Properties of Weak Perron Numbers

We study algebraic properties of real positive algebraic numbers which are not less than the moduli of their conjugates. In particular, we are interested in the relation of these numbers to Perron numbers.

متن کامل

The smallest Perron numbers

A Perron number is a real algebraic integer α of degree d ≥ 2, whose conjugates are αi, such that α > max2≤i≤d |αi|. In this paper we compute the smallest Perron numbers of degree d ≤ 24 and verify that they all satisfy the Lind-Boyd conjecture. Moreover, the smallest Perron numbers of degree 17 and 23 give the smallest house for these degrees. The computations use a family of explicit auxiliar...

متن کامل

Cellular dosimetry of beta emitting radionuclides-antibody conjugates for radioimmunotherapy

Introduction: The choice of optimal radionuclides for radioimmunotherapy depends on several factors, especially the radionuclide and antibody. The dosimetric characteristics of a non-internalizing and an internalizing monoclonal antibody (MAb) labeled with beta emitting radionuclides were investigated. Methods: Using Geant4-DNA Monte Carlo simulation, we ...

متن کامل

On the Perron Problem for the Exponential Dichotomy of C0-semigroups

In the present paper we give a sufficient condition for the exponential dichotomy of a C0-semigroup in terms of ”Perron-type“ theorems in the case when we don’t have the requirement of invertibility on the kernel of the dichotomic projection.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008