Detecting Anomalous Process Behaviour Using Second Generation Artificial Immune Systems
نویسندگان
چکیده
Artificial Immune Systems have been successfully applied to a number of problem domains including fault tolerance and data mining, but have been shown to scale poorly when applied to computer intrusion detection despite the fact that the biological immune system is a very effective anomaly detector. This may be because AIS algorithms have previously been based on the adaptive immune system and biologically-naive models. This paper focuses on describing and testing a more complex and biologically-authentic AIS model, inspired by the interactions between the innate and adaptive immune systems. Its performance on a realistic process anomaly detection problem is shown to be better than standard AIS methods (negative-selection), policybased anomaly detection methods (systrace), and an alternative innate AIS approach (the DCA). In addition, it is shown that runtime information can be used in combination with system call information to enhance detection capability.
منابع مشابه
STLR: a novel danger theory based structural TLR algorithm
Artificial Immune Systems (AIS) have long been used in the field of computer security and especially in Intrusion Detection systems. Intrusion detection based on AISs falls into two main categories. The first generation of AIS is inspired from adaptive immune reactions but, the second one which is called danger theory focuses on both adaptive and innate reactions to build a more biologically-re...
متن کاملAn Immune Inspired Approach to Anomaly Detection
The immune system provides a rich metaphor for computer security: anomaly detection that works in nature should work for machines. However, early artificial immune system approaches for computer security had only limited success. Arguably, this was due to these artificial systems being based on too simplistic a view of the immune system. We present here a second generation artificial immune sys...
متن کاملSemantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملAn Agent Based Classification Model
The major function of this model is to access the UCI Wisconsin Breast Cancer data-set[1] and classify the data items into two categories, which are normal and anomalous. This kind of classification can be referred as anomaly detection, which discriminates anomalous behaviour from normal behaviour in computer systems. One popular solution for anomaly detection is Artificial Immune Systems (AIS)...
متن کاملA hybrid artificial immune system and Self Organising Map for network intrusion detection
Network intrusion detection is the problem of detecting unauthorised use of, or access to, computer systems over a network. Two broad approaches exist to tackle this problem: anomaly detection and misuse detection. An anomaly detection system is trained only on examples of normal connections, and thus has the potential to detect novel attacks. However, many anomaly detection systems simply repo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJUC
دوره 6 شماره
صفحات -
تاریخ انتشار 2010