Rac1 mediates STAT3 activation by autocrine IL-6.
نویسندگان
چکیده
The activity of the small GTPase, Rac1, plays a role in various cellular processes including cytoskeletal rearrangement, gene transcription, and malignant transformation. In this report constitutively active Rac1 (Rac V12) is shown to stimulate the activation of STAT3, a member of the family of signal transducers and activators of transcription (STATs). The activity of Rac1 leads to STAT3 translocation to the nucleus coincident with STAT3-dependent gene expression. The expression of Vav (Delta1-187), a constitutively active guanine nucleotide exchange factor for the Rho GTPases, or activated forms of Ras or Rho family members, leads to STAT3-specific activation. The activation of STAT3 requires tyrosine phosphorylation at residue 705, but is not dependent on phosphorylation of Ser-727. Our studies indicate that Rac1 induces STAT3 activation through an indirect mechanism that involves the autocrine production and action of IL-6, a known mediator of STAT3 response. Rac V12 expression results in the induction of the IL-6 and IL-6 receptor genes and neutralizing antibodies directed against the IL-6 receptor block Rac1-induced STAT3 activation. Furthermore, inhibition of the nuclear factor-kappaB activation or disruption of IL-6-mediated signaling through the expression of IkappaBalpha S32AS36A and suppressor of cytokine signaling 3, respectively, blocks Rac1-induced STAT3 activation. These findings elucidate a mechanism dependent on the induction of an autocrine IL-6 activation loop through which Rac1 mediates STAT3 activation establishing a link between oncogenic GTPase activity and Janus kinase/STAT signaling.
منابع مشابه
Constitutive Stat3, Tyr705, and Ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6.
To explore the activation patterns of signal transducer and activator of transcription 3 (Stat3) in acute myeloid leukemia (AML), we examined whether the phosphorylation of tyrosine705 (Tyr705) and serine727 (Ser727) residues was abnormally regulated in cells from patients with AML. In 5 of 20 (25%) patients with AML, Stat3 was constitutively phosphorylated on Tyr705 and Ser727, which were not ...
متن کاملCelecoxib inhibits interleukin-6/interleukin-6 receptor-induced JAK2/STAT3 phosphorylation in human hepatocellular carcinoma cells.
Growing evidence shows an association between chronic liver inflammation and hepatocellular carcinoma (HCC) development. STAT3, which is associated with inflammation and cellular transformation, is constitutively activated in human HCC tissues but not in normal human liver tissues. Although interleukin-6 (IL-6) is elevated in the serum of patients with HCC, it is not fully understood whether ST...
متن کاملElectrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca signals and an IL-6 autocrine loop
Bustamante M, Fernández-Verdejo R, Jaimovich E, Buvinic S. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca signals and an IL-6 autocrine loop. Am J Physiol Endocrinol Metab 306: E869 –E882, 2014. First published February 11, 2014; doi:10.1152/ajpendo.00450.2013.— Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal m...
متن کاملInterleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation.
Interleukin 6 (IL-6) is a growth and survival factor for multiple myeloma cells. As we report here, the IL-6-dependent human myeloma cell line INA-6 responds with a remarkably rapid and complete apoptosis to cytokine withdrawal. Among the antiapoptotic members of the B-cell lymphoma-2 (Bcl-2) family of apoptosis regulators, only myeloid cell factor-1 (Mcl-1) was slightly induced by IL-6. Overex...
متن کاملMolecular cross-talk between the NFkappaB and STAT3 signaling pathways in head and neck squamous cell carcinoma.
The development of head and neck squamous cell carcinoma (HNSCC) involves the accumulation of genetic and epigenetic alterations in tumor-suppressor proteins, together with the persistent activation of growth-promoting signaling pathways. The activation of epidermal growth factor receptor (EGFR) is a frequent event in HNSCC. However, EGFR-independent mechanisms also contribute to the activation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 16 شماره
صفحات -
تاریخ انتشار 2001